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ABSTRACT

Periodic solutions of finite amplitude are found

for two different models of nonlinear longitudinal wave-type

oscillations in a rocket combustor. In the first model, the

characteristic time of the combustion process is negligible

compared to the wave travel time in the chamber, or equiv-

alently, the period of oscillation. Here, no phase or time-

lag exists between energy addition from combustion and pressure.

This model is believed to apply to premixed gas rockets where

chemical kinetics seem to provide the forcing function. In

the second model, the wave travel time and the characteristic

time of the combustion process are of the same order of

magnitude, so that a phase can exist between energy addition

and pressure. Specifically, the Crocco time-lag concept is

employed to lntroduce the characteristic time in this model.

This concept has proven successful in predicting the stability

behavior of liquid rockets when small perturbations occur and

is extended to the nonlinear case in this work. In both

models the chamber is considered to be of sufficient length

to allow the approximations of concentrated combustion at the

injector end of the chamber and short nozzle at the other end.

The theory predicts that unstable operation is

possible for both cases within a certain range of the parameters

which describe the feedback from the combustion process to the

• solutions may be stable orwave phenomenon The periodic ""_
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unstable to small disturbances of the amplitude. It is found

that there are solutions in the range of practical interest,

with respect to liquid rockets, whlch are unstable. Thls is

shown to mean that "triggering" of an oscillation by a finite

disturbance may occur In the practical range of operation.

The only stable solutions should contain shock waves. An impor-

tant relationship exists between the forcing function of the

oscillation and the wave form. This Indlcates the possibility

that something could be learned about the combustion process

by observing the wave form in the chamber. As the amplitude

goes to zero the results are identical with the results of

small perturbation analyses.

Preliminary data indicate qualitative agreement

between theory and experiment on both a premixed gas rocket

(for the first model) and a liquid rocket (for the second

mode i ).
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Genera I :

X =

t --

U =

a =

p --

/ -
"T

F,G =

R --

Subscript :

NOMENCLATURE

longitudinal space dimension

time

gas velocity

speed of sound

pressure

density

temperature

characteristic coordinates

Riemann invariants

homogeneous solutions for x and t

inhomogeneous part of bounda_ condition
at combustion zone

perturbation parameter

ratio of specific heats

 hiu
2 o

mass flow per unit area per unit time

i : 0,i 2, etc. indicates coefficients of ith

term series expansion in parameter C .

Chapter II and Appendices B and C:

r

T

V

= ther_ml conductivity

= turbulent exchange coefficient for heat transfer

= energy release rate per unit volume

= period of oscillation

IT

= slippage" of characteristics

= parameters related to the combustion process

shock velocity



Subscript: AB, BC, CD indicates direction of shock wave
(see Figure 3)

Chapter III and Appendix E:

_, _ = scaled characteristic coordinates

: time-lag

b = time-lag in characteristic coordinates

tim_-_1_ in _i_ _._a__ coordinat_

n = interaction index

N, M, L coefficients in Taylor series expansion for

rate function of combustion process

r = exponential growth or decay factor

= frequency in characteristic coordina __eo_"

_O

I+_

1-_

-- frequency

@-i
= 1+-'2-- U0

1-_ u o

= amplitude coefficient for se..'ond harmonic term in
the wave form

B __. amplitude coefficient for' the third }Jarmonic term
in t]_e wave form

C : coefficient for correction in mean flow properties

= phase factor between first and second harmonics

= phase factor between first and third harmonics

D

Note :

= coefficient of displacement from the neutral line

= functions related to P,c,F and G

k I , kl*
, rI through r , VI, Vl*, V2, ml, Cl,.dl, gl'

h I through m21 , c21' d21' g21' h21' Z1 through Z6,

_r, _i, br, bi, _r, _i, Br, Bi,_l, _2, _3' YI' Y2'Y3

ar' ai' Cr' _r, _i are all constants defined in Chapter

III.
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Subscript :

Superscript :

i -- 0,1,2, etc. indicates coefficients in series
expansion in _ of unsteady quantities about
their steady-state values.

i = 0,1,2, etc. indicates coefficients in
expansion in _ of charactcristic parameters
("eigenvalues") of solution about ti]eir values
for neutral oscillation with infinitesimal
amplitudes.
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CHAPTER I

INTRODUCTION

NATURE OF THE PHYSICAL PROBLEM

High frequency combustion instability involves wave-

type oscillatlons.of pressure and velocity within the combustion

chamber and exhaust nozzle of the rocket motor. Energy is

supplied to maintain the oscillation by the combustion process.

The occurrence of instability in actual rocket motors is a

serious problem, since large heat transfer rates to the walls

are associated with the high amplitude waves. This often

results in the "burn-out" of the motor, near.the injector or at

nozzle section. This instability phenomenon has been observed

in both liquid and solid propellant rockets as well as in

experimental pre-mixed gas rockets.

The instability may occur in the longitudinal,

transverse, or mixed mode, depending mainly on the geometry of

the chamber. The waveform of the longitudinal mode usually

consists of shock waves followed by exponential decays with

time in pressure and velocity. Sinusoldal waveforms have been

observed, however, particularly near the stability limits.

Continuous waveforms with steep "peaks" and shallow "valleys"

have been observed for the transverse mode in full cylindrical

chambers. Shocks or detonations have been observed for this

mode in annular chambers. Figure i shows pressure waveforms

of various types.

Crocco, Grey, HarrJe, and Reardon have observed upper

* The waveform is considered with variable time and fixed

position.
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and lower-length stability limits as well as off-resonant

oscillation for the longitudinal mode in liquid rockets using

variable-length chambers. They have observed corresponding

effects for the transverse mode. These experiments have

provided evidence of the existence of an important characteristic

time associated with the forcing function of the instability.

They have also produced results which are in good quantitative

agreement with the predictions of the Crocco time-lag theory.

(See Ref. I, 2, 3, and 4.) Of course, that theory involves a

llnearized treatment and applies only at the stability limit.

However, on the basis of its success, it is reasonable to

expect that the time-lag effect can be equally important away

from the stability limit. In that region away from the limit,

finlte-amplitude waves may exist. It is noteworthy that in the

experimental verification of the tlme-lag theory, the frequencies

of finite-amplitude waves were measured in motors operating very

close to the stability limit but not at the limit.

The _nstability may be de_eloped in two different

manners; by a spontaneous action (occurring within the combustion

chamber) or by a "triggering" action (from inside or outside of

the chamber). The fomner type arises from small perturbations

in the flow field. These perturbations are forced to grow by

energy addition from the combustion process. The latter type

is caused by large disturbances to the system, such as, abrupt

changes in the feed system operation. In the case of many

experimental motors, artificial pulses are used_enerated by
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gun powder blasts or high-pressure gas blasts). The onset of

the spontaneous instability may, in principle, be treated by a

linearized analysis. However, the onset of the "triggered"

instability is nonlinear in nature and cannot be treated by a

llnearlzed analysis. Both types of instability will involve

nonlinear effects. These effects are present with any finite-

amplitude wave so that they are important whenever a small

perturbation grows in amplitude. In the longitudinal mode, the

nonlinear effects can be important even for small amplitudes,

since wave distortion and shock formation may occur. Both

types of instability, although developed dlfferently, result

in similar cyclic oscillations when fully established.

References 5 and 6 discuss experime_ts involving

pulzing techniques for both the longitudinal and transverse

modes in liquid rockets. References 7 and 8 discuss pulsing

techniques for the longitudinal mode in solid rockets. It has

been clearly demonstrated that high frequency instability may

be triggered under certain operating conditions when sufficiently

energetic pulses are applied. Figure 2 (which is borrowed from

Ref. 5) shows an example of this"triggered' instability in a

graphic manner. The results are for a liquid rocket designed

to allow only transverse oscillation. A variable-grain gun

powder charge produces the pulse.

The important physical aspects of the problem are

that combustion instability occurs with different waveforms for

different modes and that off-resonant oscillation and "triggering"
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action are possible.

APPROACH TO THE THEORETICAL PROBLEM

A common approach to the nonli]ear instability problem

involves the numerical integration of the equations of motion

(rewritten in some convenient form) based on certain initial

conditions. These initial conditions must be that some wave

or disturbance exists in the combustion chamber at the initial

time. The disturbance may have any one of an infinite number

of functional _orms. The numerical integ_ation of the equations

determines whether this disturbance decays in amplitude (described

as "stable") or grows i_ amplitude ("unstable"). However, only

the stability of the particular disturbance taken initially will

be determined. The stability of the motor can be determined

only if all possible initial disturbances are examinedand if

the stability of each is determined. Therefore, this approach

has very grave shortcomings.

The present work uses a different approach. Since

combustion instability is observed to be a cyclic ohenomenon when

fully established, a theory may be developed whLch uses the

cFclic condition rather than initial conditions. The periodic

solution which results from this approach may be either stable

or unstable; i.e., any small perturbations to the amplitude

associated with the periodic solution may either grow (unstable)

or decay (stable). If the solutio.] is stable, the amplitude of

the fully established oscillation has been found. On the other



-5-

hand, if the solution is unstable, the amplitude of the disturbance

sufficient to "trigger" the cyclic oscillation has been found.

This type of approach has often been used in the analysis of

nonlinear oscillations but has never before been applied to

the combustion instability problem.

Any nonlinear theory developed for liquid rockets

should include a time-lag effect. Until the driving mechanism

of the instability is understood, the time-lag concept cannot

be formulated analytically in a proper manner. The heuristic

formulation presented by Crocco (Ref. l) appears to be a

reasonable choice at this time. A theory applicable to other

types of rockets, such as a premlxed gas rocket, where phasing

effects are not important, should not contain a time-lag effect.

It should be noted that a theory without time-lag effects may

be considered as a limiting case for liquid rockets.

Before attacking the nonlinear combustion instability

problem, it is useful to examine three topics; l) nonlinear

mechanical analogies, 2) phenomena closely related to the

combustion instability phenomenon, and 3) the various gas-

dynamical processes involved in rocket instability. Appendix

A contains the analysis of a nonlinear ordinary differential

equation with time-lag effects. This shows that off-resonant

oscillations are possible due to the time-lag effect. The

resonant solution is obtained in the limiting case of no time-lag.

It is seen that the initial conditions may be replaced by the
*The feedback of energy from the combustion process to the

chamber oscillation at any instant depends upon the thermo-
dynamic conditions at the combustion zone Over a finite period
of time.
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cyclic condition. The handling of the perturbation technique

(including eigenvalue perturbations) for nonlinear equations is

demonstrated.

The most interesting works on phenomena closely

related to nonlinear combustion instability were performed by

Maslen and Moore (Ref. 9 and i0) and Chu (Ref. II and 12).

Maslen and Moore analyzed the case of irrotational transverse

waves in a cylindrical chamber filled with gas at zero mean

flow. They found a periodic solution with a nonlinear waveform

which consisted of high, sharp "peaks" and shallow, long "valleys".

These waveforms are similar to those found in actual rocket

combustion chambers. Their chamber is different from an actual

combustion chamber in that the effects of mass and energy

addition are neglected, and that there is no nozzle. All these

effects are of the order of the mean flow or of some mean

steady-state Mach number in the chamber, When applied to an

actual chamber, the error in these should be of the order of

the Mach number. This is often small and explains the similarity

in the wavefo_ns. A standard perturbation procedure was used

(

including an eigenvalue (frequency) perturbation. Since the

frequency perturbation was of second order, a third order

analysis was necessary.

Chu (Ref. ll and 12) analyzed the case of resonant,

longitudinal oscillations in a one-dimensional chamber filled

with gas at zero mean flow. Energy, but no mass, was added

at one end of the chamber while a solid wall stood at the o_her
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end. The cyclic condition replaced the initial conditions. As

is usual for resonant oscillations, a second order analysis

yielded a first order approximation to the solution. "Sawtooth"

waveforms in the chamber were predicted. That is, shock waves

followed by linear pressure decay (with time) were shown to

exist.

Finally, some gasdynamical processes are considered

which can be important in combustion chamber wave phenomena:

amplitude increase, amplitude decrease, wave steepening, wave

broadening, and wave reflection. Note that these need not be

distinct processes.

The amplitude increases whenever energy is added with

the proper phasing. The phasing depends on the characteristic

time of that portion of the combustion process which involves

the feedback of energy to the oscillation. That is, it depends

on the duration of _he pressure-sensitlve portion of the com-

bustion process. When this characteristic time and the period

of oscillation are of the same order of magnitude, a coupling

between the combustion process and the wave phenomenon may

occur. If the coupling is sufficiently strong, unstable

operation of the motor results. Instability may also result if

the characteristic time of the cor_ustion process is negligibly

small compared to thc period of oscillation. The energy addition

and, therefore, the resulting amplitude increase are of the

order of magnitude of the mean flow.

Friction, heat transfer, and shock waves are
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dissipative processes which result in amplitude decrease.

Friction and heat transfer occur mainly near the chamber walls

and have negligible effects elsewhere. Since shock wave

dissipation is of third order in amplitude, it is important only

for large amplitudes. The mean flow through the rocket motor

convects some of the energy of oscillation through the nozzle,

resulting in a decrease in amplitude. The amplitude decrease

due to reflection at the nozzle end is, therefore, of the order

of the mean flow.

Any compression wave moving through a uniform medium

in one direction inherently tends to steepen. In the same

situation, an expansion wave tends to broaden. Wavesteepening

would result in shock wave formation after some time. This

would be followed by dissipation of the wave with eventual

disappearance of the wave unless some other influence were

present. For oscillations in the transverse mode in cylindical

chambers, periodic solutions without shocks are possible. Here,

shock formation is prevented by the "turning" effect at the

outer wall. Maslen and Moore have shown that cyclic solutions

are allowed even in the absence of a driving mechanism (such

as combustion). This is generally not true with the longitudinal

mode where cyclic waveforms usually involve shocks. In that

case, the waves will dissipate unless a driving mechanism is

provided.

If a wave moves through a gradually decreasing cross-

sectional area, a gradual reflection of the wave occurs over a
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period of time. Of course, the wave is broadened in reflection.

Therefore, a long nozzle in a combustion chamber inhibits shock

formation.

It is also possible that wave steepening will not

occur when the chamber is oscillating at off-resonant frequencies.

If a "bundle" of characteristics initially representing a

compression wave is followed through the space versus time plot,

it is seen that the stren_th of the compression wave could

change. In fact, the wave could even become an expansion. This

results from the difference between the wave travel time and

the period of flow oscillation. Therefore, in some cases, it

mijht be expected that a longitudinal instability could exist

without shock waves.

Wave reflection occurs in the longitudinal node at

both e_]ds of tl_e chamber. The reflection at the nozzle occurs

with a loss of amplitude due to mean flow convection and with

a wave broadening due to changing area. In the limit of a zero-

length nozzle, no wave broadening occurs, but amplitude will

decrease discontinuously on reflection. In the limit of con-

centrated combustion at the other end of the chamber, the

amplitude increases discontinuously in reflection there. Of

course, in the transverse mode, the "turning" effect previously

mentioned is a reflection process.

THE )RETICAL MODELS

This work deals with instability in the longitudinal
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mode. Two separate models are analyzed. The first involves a

shock wave instability with no time-lag effects present in

combustion. That is, the characteristic time of combustion

is negligibly small compared to the period of oscillation. The

second model assumes no shocks but contains time-lag effects.

In particular, the Crocco time-lag postulate is used. In both

cases, only periodic solutions are sought in some small range

near the neutral stability line. The stability of the solutions mu_

be determined, i.e., the solutions may be either stable limit

cycles or unstable limit cycles.

In crder to simplify the gasdynamical processes,

certain assumptions are made. It is assumed that the flow is

one-dimensional and the chamber cross-sectional area is constant.

The chamber is assumed to be very long so that the limiting

cases of zero length nozzle and concentrated combustion at the

chamber end are investigated. Further, no dissipative processes

are allowed except for the presence of the shock wave in the

first model.

The first analysis, presented in Chapter II, yields

the first order approximation to a periodic solution describing

the waveform of the fundamental longitudinal mode. Here, a

second order analysis yields a first order solution. A third

order analysis cannot be performed since shock wave dissipation

is of that order. The waveform consists of shock discontinuities

followed by exponential decays in pressure and velocity. The second

analysis, presented in Chapter Ill, yields an approximation,
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correct to third order, to a periodic solution without shock

waves. This solution describes the waveform of any longitudinal

mode when time-lag exists. The analysis is carried to third

order so that the eigen value perturbations, which are of second

order, _u_ be dete __ For each __] _o4_] the

solution explicitly relates the waveform and the wave amplitude

to the parameters which characterize the combustion process.

These parameters are related to the means of energy release

and feedback; allowing, therefore, the possibility of investi-

gating the driving mechanism of the instability by observing

the waveform in the combustion chamber.

MATHEMATICAL TECHNIc UE

For the anal_sis of nonlinear wave phe_omena in both

one-dlmensional unsteady: flow and two-dlmensional steady super-

sonic flow, it is convenient to use the characteristic coordinate

perturbation techni_ue. This method was first used to obtain

higher order corrections to lineari<ed theorj for a steady two-

dimensional uniform supersonic flow around a thin airfoil. (Ref.

16). Linearized airfoil theory predicts that the solution is

constant along each member of one family of characteristics.

However, the characteristic curves are given o zero oruer onl3:

and, therefore, are straight, parallel line_. Actuallj, theu

are not straight, parallel lines whennonllnear terms are considered.
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If it is assumed that the characteristics are straight, parallel

limes, the error accumulates as the distance from the airfoil

increases. In the case of one-dlmensional, unsteady flow,

serious errors will result unless account is taken of the

deviation of the characteristics From straight, parallel lines.

In fact, in the combustion instability problem, the error can

be more serious since both families of characteristics have

important interactions causing curvature effects to appear to

first order, while with flow around an airfoil, curvature of

the characteristics is of higher order.

The technique used involves _erturbing the time and

space dimensions as well as the flow properties in some amplitude

parameter. The characteristics of the field form the new

coordinate system, so that x and t are now dependent

variables. The purpose of the perturbation scheme is to obtain

an infinite set of linear equations from a finite set of non-

linear equations. This particular perturbation scheme yields

a greater portion of homogeneous equations than an ordinary

scheme yields. This scheme, therefore, simplified the analysla,

although it is more abstract than the usual perturbation

scheme.

The technk_ue was developed ]_ L_hhk[ll (Ref. 13) and Whlthan

(Ref. 16)and was extended to the perturbation of both characteristic

coordinates _ Lin (Ref. 14)and Fox (Ref. 15). It was f_rst applied to

the problem of oscillations with shocks by Chu (Ref. ii and 12).

Those oscillations occurred in a one-dimensional chamber with
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zero mean flow. However, when attacking more complex problems

such as the combustion instability problem, simplifications to

the technique, which allow a clearer insight to the physical

r_at_re of the phenomenon, are very desirable. The present

analysis introduces simplifications to the technique which

involve the continuation of the solution across shock waves.
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CHAPTERII

A SHOCKWAVEMODELOF UNSTABLEROCKETCOMBUSTORS:

ANALYSIS :

A shock wave model of the fundamental mode of com-

bustion instability is investigated. The assumption is made

tha_ the characteristic time of the combustion process is

negligible compared to the wave travel time. Other assumptions

are :

(2)

(3)

may be approximated by the limiting case of zero-length nozzle

and concentrated combustion zone at the chamber end.

(4) A shock wave moves back and forth the length of

the chamber with a constar, t period, reflecting alternatel_ from

the nozzle end and the combustion end.

(5) Flow is homentropic outside of the combustion

zone up to and including second order in the wave amplitude.

This allows shock waves to occur but no entropy waves are

allowed.

(6) The chamber gas is calorically perfect.

If the length of the combustion zone is small com-

pared to the chamber length (as assumed above), unstable

operation may be considered forced in a piston-like manner b5

the combustion process. The power per unit area (pressure

times _as velocity) at the end of the combustion zone is a

rate of energy input to the oscillation of tie chamber gases.

The flow is one-dimensional.

The chamber cross-sectional area is constant.

The chamber is ver_ long so that the configuration
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zero mean flow. However, when attacking more complex problems

such as the combustion instability problem, simplifications to

the technique, which allow a clearer insight to the physical

r_ature of the phenomenon, are very desirable. The present

analysis introduces simplifications to the technique which

involve the continuation of t]_e solution across shock waves.
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CHAPTER II

A SHOCK WAVE MODEL OF UNSTABLE ROCKEr COMBUSTORS:

ANALYSIS:

A shock wave model of the fundamental mode of com-

bustion instability is investigated. The assumption is made

that the characteristic time of the combustion process is

ne_iligible compared to the wave travel time. Other assumptions

are :

(i) The flow is one-dlmensional.

(2)

(3)

may be approximated by the limiting case of zero-length nozzle

and concentrated combustion zone at the chamber end.

(4) A shock wave moves back and forth the length of

the chamber with a constar_t period, reflecting alternatel_ from

the nozzle end and the combustion end.

(5) Flow is homentropic outside of the combustion

zone up to and including second order in the wave amplitude.

This allows shock waves to occur but no entropy waves are

allowed.

(6) The chamber gas is calorically perfect.

If the length of the combustion zone is small com-

pared to the chamber length (as assumed above), unstable

operation may be considered forced in a piston-like manner b5

the combustion process. The power per unit area (pressure

times gas velocity) at the end of the combustion zone is a

rate of energy input to the oscillation of t}e chamber gases.

The chamber cross-sectlonal area is constant.

The chamber is vet7 long so that the configuration
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This power term is related to the rate of energy release within

the combustion zone and, therefore, is, in general, a function

of thermodynamic conditions within the zone. If appropriate

space-wise mean values are used for the thermodynamic properties

(only within the combustion zone) and, further, if all thermo-

dynamic properties are related to the speed of sound, a relatlon*

applicable at the end of the combustion zone is obtained:

terms
of

order _@

The constants c@ and _may be calculated based on a knowledge

of the combustion process. In Appendix B they are determined

for a one-dimensional combustion zone where perturbations due

to chemical effects are important but perturbations due to

diffusion effects are negligible. The above relation is the

boundaFj condition at one chamber end when the limiting case

of concentrated combustion is considered.

All thermodynamic variables are nondimenslonalized

with respect to their steady-state values. The gas velocitb, is

nondimensionalized with respect to the stead_-state speed of

sound, space dimension with respect to chamber length and time

dimension with respect to chamber length divided by speed of

sound.

The well-known compatibility relations may be

obtained from the equations of unsteady, one-dimensional motion

for a fluid. Under our assumptions these relations (to second

order) are

*Zero subscripts denote steady-state values.

(1)
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Note that integration of _ gives the two families of
dt

characteristic lines. Now let each member of the family with negative

(_-- u.-o.) be characterized by a certain value of the
slope

parameter _ and each member of the family with positive slope,

_ =_÷a) be characterized by a certain value of the param-

eter _ . Let _ and _ become the new independent variables

and it is said

u = u (_,_)

a =a (,_,_)

x=x

t=t (_,_)

ferential equations in _,_

The compatibility relations are now partial dif-

coordinates

= 0

It is necessary to have a numberlng system for the

(2)

coordinates. A convenient numbering system is shown in Figure

3. Primes are used for Re,ion= II and double primes are used
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for Region III. The point t = 0 is chosen as the time ofthe

shock reflection at the combustion end. Number _ by the value

x at its intersection with the shock wave AB. Numberof

by the value of _ at their intersection at the x = 0 position

(injector}. Let _' = _ at their intersection at the shock

BC. Let _ = 1 + _' at their intersection at the x - 1

position (nozzle). Number _" by the value of x at its

intersection with the shock CD and let _" - _" at their

intersection at x _ O. The cyclic condition will be implied

by stating conditions along the shock CD are identical to

conditions along the shock AB. Therefore, the characteristics

in the other regions need not be numbered since the solutions

will be cyclic.

The dependent variables are perturbed in a regular

series in _ which is some amplitude parameter as yet not

specifically defined

u = u + EuI (_,F) + £2 u2 (_0_) + ....
0

a : 1 + 6a I (o_1 + _2 a2 (cg,_) + ....

p : 1 + gPl (_°_) + _2 P2 (_'_) + ....

x --x° (_.p) + £_1 (_'_)+ a2 x2 ("'_) + ....

t = tO (og _) + _t I _,_) + _2 t2 _g,_) + ....

These series are substituted in the system of Equations (2)

and the equations are separated according to powers in _ as

is the standard procedure. Since the flow field is uniform to

lowest order, the equations up to second order become:
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uo : constant; ao : constant = 1

(3)

=..._.. _..,.. + "_=, = o j_'-, _ _----_'- _ "_- - _u'' =° (4)$/d

_#
. (=,- =,) _o

-- = 0
_ ._ = Oi __ j,d ._d (6)

First, the Equations (4)and (6) for u and a are

solved. The first and second order equations are similar so

they will be solved in identical fashion. Letting the sub-

script I = i or 2, the solutions are:

It-I = a, =

so that

o.;, =

(7)

N:te that P/2 and Q/2 are the Riemann invariants. (Reference 17).

The Pi (_) and Q I (_) are still arbitrary and

may be determined by a knowledge of initial conditions and

boundary conditions. The boundary conditions are well-de-

fined, as will later be thown, but there is no knowledge of

initial conditions. The solution will be obtained b__ leaving

the initial conditions arbitrary and applying the cyclic con-
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dltlon in its place. Once Pi and Qi are determined, a

simple calculation yields a i and ul. Also, once these are

determined, x and t are found from their governing differ-

ential equations and boundary conditions which allows the

transform_ation to the original coordinate system.

Since the nozzle is short any oscillatory process-

es within it may be considered quasi-steady. Therefore, the

entrance Mach number Is constant since it is a function of

area ratio only. The nozzle boundary condition becomes

or

where _" = _" !- t. %

Equation (i) in nondlmenslonal form gives the

bounda_T condition at the combustion zone.

(8)

(9)

This results in the following boundary condition for the

first order terms in the perturbation series

e 6 I

When ¢_,I, the admittance at the concentrated corr_bustlon

zone is larser than the nozzle admittance. This is an un-

stable situation as can be shown by a small perturbation

analysis which indicates an exponential growth of wave amp-

litude when c@ • i. This or:roll perturbation analysis is

standard and is performed in ApF.endix C. It follows from a
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comparison with the small perturbation analysis that an os-

cillation cannot be periodic to first or0er in • if no shock

is present since the energy added to the oscillation by the

interaction with the combustion process is greater than the

energy taken from the oscillation by the nozzle outflow. If

a periodic solution is to exist there must be another mechanism

besides the nozzle which removes energy of oscillation. Since

a shock wave seems to be the most realistic choice of such a

dissipative mechanism, its existence has been postulated. The

dissipation of energy by a shock is monotonically increasing

with its amplitude or strength. More specifically, the dis-

sipation or creation of entropy is of third order in shock

strength. It is then expected that the strength of the shock

is monotonically increasing with the difference in the ad-

mittances of the combustion zone and the nozzle. Note, of

course, that _ _s representative of the shock strength and

(_-l) is representative of the difference in the admittances

at the chamber ends. Since series convergence cannot be

proven for any choice of _, there is freedom in the specifi-

cation of the relationship between _ and (_-l). Therefore,

the most simple functional relationship will be chosen which

says that [ is directly proportional to (¢@-i) or specifically

E, =
(:o)

The bounda_ condition (9) at the combustion zone now becomes

where

u._ =: u.,o o.;. + R.q, _ 3, : 0

Rf = 0
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This may be put in the more convenient form

I+_'. £
: '-_ QL ÷ ,-_" R/.

(ll)

To first order the boundary conditions at the chamber ends

are identical so that a periodic solution ..may now be obtained.

As is well known one family of the Riemann invariants

is always continuous up to second order through a shock wave;

P invarlants may be continued through rearward-moving shocks

while Q invariants may be continued through forward-moving

shocks. The two boundary conditions (8) and (ii) and this

property of continuation through shocks allows the determination

It is
of Pi (_), Pi' (_')' and Qi (@g') in terms of Qi (@_)"

found that

(121
,-_ p.'
I*_ i #+u"

Note that Qi (_) will be determined upon application of the

cyclic condition.

When the cyclic condition is applied to determine ©i'

it is necessary to relate _ and_ to x and t. Hence, the

Equations (3) and (5) for x and t must be solved. The zero

order Equations (3) may be put in the convenient form.

_o+, I','% oJ: 0

with the general solution

+.i: : +o+__).; "'" --_o :_ ++P")
I-% o ', .,.% -
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The boundary conditions state

xo --0 at _:
s I

Xo -- 1 at _= 1 +#

to = 0 at _=# = 0

xo ._at # = 0

Upon their application, it is found that for Region I

t, F, G, C_, and _ inUsing primes on x,

would give the solution for Region II

@ o

e=c _'_'o -6" ; o- ;+_o +_'u'o

(1_)

the above

(13b)

Similarly, the first order Equations (5) may be written

as

I]% - , ] - -4 (,- _)' - , C,--;)"

[ -d: r.+,. p,, l _ 3-1" Q, (._)

with the general solution for Region I

,-_ , ' 4 _'-%' J.
0

I.o-ii 41, _t'l'li tt ''
• (14a)

where Z is a dumm7 variable, For Region II the solution is
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I-U,
@ @ .

The initial condition would be

!' +t,-etc-)
However, the initial condition will be left arbitrary and

will be replaced _" a cy _,._._,,.

arbitrary. The boundary conditions are

: 0 ate= i_ = 0t1

x I . 0 ate= ff

#

x I = 0 at_ '_ 1 +15''

m_=+ is, G1 .......

(15a)

The convenience of grouping the variables x I and t1

into the two families shown above will be demonstrated when the

solutions are continued across shock waves. These two families

possess a similar property to the Riemann invariants; that is,

one of the two families may always be continued across a shock

discontinuity. As is shown in Figure 4a, characteristic

lines are constantly intersecting shock waves from both sides.

Of course, they no longer exist in a real fashion after their

intersection. When using characteristic coordinates, it is

convenient to extend the characteristics beyond their points

of intersection with the shock by considering the transformation

of x, t to _, p as being double-valued for some small region

(OK_] ) near the shock wave. Of course, only one value

of the transformation is applicable in reality, but this

abstraction saves much labor. Figure 4b shows the slight over-

lapping of the _, _ sheet _glon _ and the _',_'sbeet _eg_ If)near the
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I_arwa_1-mo_lng shock BC. Now,_e Riemann _arlant P_ )/2 may

be continued across the shock by saying PI (D) at point 0

(see Figure 4c) equals PI' (t) at point O' wherep=p'by

definition since _hey meet at the shock wave. It is immediately

shown by a Taylor series expansion about 0 and O' and a

matching process at the shock that

[+, -i+,• -+,']_ -_o(¢ z)
- _15b)

I -I-I.I. 4. I._o0 0 O"

As shown schematically in Figure 4b, the path of

tlte shock BC is given by the relationship:

_-= I+ E:_ (#)-,.o (¢_)
This applies in Region I. The equivalent stateme_t written

for Region II says:

.,_ ,. _ _ Ca'). o Cez)

[+Obviously, the function I 4- I_o is

continuous across the shock wave since x and t are continuous

across the shock wave. It follows that this function has the

same value at •the shock in both Region I and Region II. This

function may be expressed as a Taylor series in each region

and then the two series are set equal at the shock wave. In

Region I, the function is expanded about the line _= 1

(point O) and, in Region II, about the line _'= 1 (point 0').

The final result is:

O • 0 e
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Notethat t.]io eroever herot. t
[ J--qoCcan be shown from Equation (13), I,_@ = ,÷me o ,

From this, it is seen that Equation (15b) immediately follows.

Equations (14)and (15b)yield _(_)-F°_)+T _(z)_z÷O(g_Then

@

The advantage of this is that it is not necessary

to calculate explicitly the exact location of our shock before

proceeding with the determination of higher order coefficients

in Region II. This method has uncoupled that calculation from

the rest, and it may be performed later, if so desired, pro-

viding a tremendous simplificatioL_ oveL" previous methods.

Similarly, the other family or grouping of x and t
I 1

be continued across a forward-moving shock wave. This

may

continuation process is not valid for

discontinuities will appear.

x and t whe :'e
2 2

The conditions (lja) and (15b) lead to the following:

_,_x___ ' Cc9

' ___A__ _ _ l+ ) (%¢'._Jz

l+u.e, _

The cyclic co:_dition is applied only by stating that

flow conditions along the shock AB in Region I are identical to

conditions along the shock CD in Region III. When the cyclic
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condition is applied, it is necessary to know the difference

in the values of _'and_'at any point of their intersection

with the shock wave CD.

In Region III, the same differential Equations

(3) and (5) govern x and t with the boundary conditions:

4" -- X at _" : 0

x = 0 at w.,, = _,,

t = T at cg,, = _,, = 0

where T is the period of the oscillation and is still un-

known. These must result in the following for the cyclic

condition to hold.

where T = To + _ T 1 +

Before proceeding the period must be determined in order to

obtain the solution for Region III. It is known that the

period is directly related to shock velocities by the relations

where T - T' + T'' and T' is the time of forward-shock travel

and T" is the time of rearward-shock travel. It is also known

that the shock velocities may be related to the flow properties

on both sides of the shock by means of the conservation equa-

tions. A well-known result is that the instantaneous velocity

for a forward-travelling shock is approximately (to first order)

the average of the slopes of the two P-characteristics (one

on each side in an x vs. t plot) inter_ecting the shock at
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that instant. For rea_vard-moving shocks, a similar approxi-

mation uses the slopes of Q-characteristics. The slopes

_ = u a be related to Q through Equations (7) and (12).+ may

In a convenient form these approximations are:

Combination of Equations (18), and (19) and separation

according to powers of _ yield the following results:
#

_

If f!

These four relationships determine To,, To , TI', and T 1

which, upon addition, yield She results for T o and T 1.

)+ ,_L?7¢ .,., . ,,,.. ,,._, jj. @, -_-LV'E., i_--'(------_JJ[9°"f

These relationship_ for T o and T1 are substituted into Equation

(17) with the result:

_L-- Z i

%-" Lv+% ,-_"

S " (20)

*Note that in order to determine the velocity of shock AB, flow

conditions immediately in front of shock AB are set equal to

flow conditions immediately in front of shock CD. This is

valid because of the cyclic nature of the phenomenon.
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Now, the function _ _._ is continuous (up to and

including first order) through the shock CD. It is evaluated

in Region II from Equations (13b), (14b), and (16) and in

Region III from Equations (13a), (14a), and (20). Note 'that

the function

_" "Ikt in
l-- tJI-o

of oscillation.

,_"%+,..• . in Region III is identical to

Region I plus a constant equal to the period

The result of matching this function across

the shock OD is ._i

+_r_,c:<,._.,_ [(_)'+ ,'+:_)VJ _,'_)a
l -/,k_ i,. 6

, 1.,,+%/ ,-.- -'- <>,_ll., , aj o

+ efa,(-<'-,0+ ' r/7-,-=._' + '*" ( ' )'7 f'_ (-)&
¢. , Lu+'_J i-_, _,-% J ..Ij,

¢t

,_,_. 4_________+4_+¢_ ) "7Q<._'-,)[ + oct')
II •

It' is readily seen that _-_,' 4- I is of order _.

are both of order _. U_ing this, a simple relationship re-

sults for the difference in the values of _" and _'at the

shock CD. The knowledge of this difference is necessary for

the application of the cyclic condition as will later be shown.

This difference is the "slippage" of the characteristics at the

shock CD and is found to be the following:

[ >" >7
This'blippage" _ _ is shown schematically Figure'5

The continuation of the Riemann invariant across the

shock CD results in:
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and noting that og"=_" --/ 4- E _ ¢_ we get

g: ,, £Z Q,, (=t'.-a)] =O, £

[, o.• _- 0 _'£')

The cyclic condition says that the flow in Region I is identical

to that in Region III so that

=1=.
£ _" c.c..)• L" _" _-,'.).,- o (_')

Noting the relation between Q_et') and (_.(Q() as given by Equa-
$ 6

tion (12), it is found that our matching condition is trivial

to first order and gives a governing ordinary differential

equation for _ C_) to second order

_Q, A_ .- ---,,,,- _ _"_)
_====w_mme

d-¢ (21)

The solution to this equation will yield the solution of our

problem. What has been done is very common in nonlinear

near-resonant solutions; that is, a second order investigation

has yielded a first order solution. If rotational effects did

not make it impossible, a third order investigation would

yield the second order solution and so forth. However, a

first order solution yields a good deal of qualitative in-

formation about the oscillation an_ also, for not-too-large

amplitudes, the analysis is quite accurate in a quantitative

manner assuming there exist no other errors than those re-

lated to the degree of the approximation.

If the following definitions are made

11"÷' (, I-'u,'*) [ ,-u.. ,. _. a_._..__o"i

_ ,--.,(_,,_) ) [""- ,.--+i,. ,,.° #-_ ,-%J

_..= _)I(,,), + (_t1£0') (22)

l
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then Equation (21) becomes

a,z Q,- c
This first order nonlinear ordinary differential equation

normally requires one boundary condition for the complete

solution, but there is none. Also, the values of the func-

tion at the endpoints of the domain of interest 04 _ _

appear as constants in the equation. These constants are not

known apriori. These two difficulties will be overcome in

the following manner. It can bc shown that physically reason-

able solutions e__i_t only for one value of the parameter C.

That onl_ C = 0 can give an oscillato_y solution is the im-

portant result of a topological investigation of the ordinary

diffe_e_,_ial equation (Appendix D). Also, stating C-O gives

a relation between the values of the solution at two points

--0 and _--I. This is Just as satisfactory as stating the

definite value of the solution at one point which is the usual

statement cf the initial or boundary condition.

following solution is obtained for Equation (21).

Hence, the

t. e-A _ ]Q, = "J

Note the exponential form of the solution indicates an ex-

ponential wave fo_n. Also, as A-_O(_--_O) a sawtooth wave

fo_ i_ obtained as shown by the limiting case
I

(23)

e,(,_l = r (E--'*)

'(p.)and _ may be determined from Equation (12) so that suf-
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flcient information is available to calculate the flow

field properties from Equations (7, 13) as a function of

position and time. Note that the pressure perturbation may

easily be related to the speed of sound perturbation by the

isentropic relation. For Region I, the final solutions are

obtained

C. ,_ e "_ U-'U"

_. I.,,-e'" "'h--_"
and for Resion II, the solutions are

L.,-_

The shock strength is calculated from the above relations

to be as follows:
.A

:.c'_.._ t._.-v" J-.'-_ 77"_"_"+ 0(£')
AB

-),

,-_ 0(_ z)

_p= = a, _ '-_'_ + 0(_')
Also, the shock velocities are{°o%)._x_

[- .*
and the period of oscillation is:

I-b" o -
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The solution indicates a shock discontinuity

followed by an exponential decay as shown in Figure 6. For

small_ this decay is nearly linear (sawtooth type). There

l-e

is no difficulty as _--_O since _ stays finite. The

shock strengths stay constant with time and strength is lost

or gained only in reflection. The absolute value of the shock

velocity always increases in time and the perturbation on the

natural period of oscillation can be shown to be of the order

of _ <I_'_) which is usually negligible. As _0 (Or _"_')

the shock strength goes to zero. This is an important result

since it shows a consistency between linear and nonlinear re-

sults; that is, the same stability limit is predicted by both

linear and nonlinear analyses. The main effect on amplitude

is produced through _while _ has only a secondary effect on

amplitude. The importance of _ is that it indicates a definite

relationship between the forcing function of the instability

and the wave form of the oscillation.

NUMERICAL EXAMPLE

A special case of the energy release rate r in

Appendix B will be examined. In this case

r - _E/RT_

where E/R is a parameter and T* is considered as dimensional.

This rate function admittedly may be too simple to be realistic,

but is primarily intended to show the interesting relationship

between functional forms of the combustion laws and the flow

oscillation in a quantitative manner.
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and X may be calculated by use of Equations (i0), (22),

and (B-9) 0 The following are obtained

Using the values _: 1.2 and u : • 1 the following results:
O

lO .0

12.5
15.o
17.5
20.0

E

.o7

.12

.17

.22

•27

.028 3.53

.189 3.53

.439 I 3.53

•778 3•53

1.207 3.53

_ shock

.152

.259

.362

.453

.522

The table shows that for this case, the comhustor is most

unstable for low temperature operation and most stable in high

temperature operation• The amplitudes are not excessively large

and the exponential shape of the wave is not too severe despite the

exponential form, of the combustion law. Figure 7 indicates

the pressure wave shape at both ends of the chamber over the

period of oscillation for the values of _ = .6 and 1.2.

Note that the shape is not very different from a sawtooth wave.

Although calculations have been made here only for a

very s_i,Lp_e_-_ case, there is no reason why they cannot be accom-

plished for more realistic combustion processes.
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CHAPTER III

NONLINEAR COMBUSTIONINSTABILITY WITH
TIME-LAG EFFECTS: LONGITUDINAL MODES

FORMULATION OF THE PROBLEM

A model of the longitudinal modes of instability

is investigated in which the characteristic time of the com-

bustion process is of the same order as the wave travel time

in the combustion chamber. This is different from the model

Of Chapter II where the time of combustion was negligible

compared to the wave travel time. When the combustion time

and the wave travel time are of the same order, the phasing b_

tween pressure (or gas velocity) oscillation and the energy

(or mass) addition oscillation is affected. One important

result of this phasing effect is that the frequency of the

oscillation may be different from a natural resonant frequency

of the chamber (See Ref. i). (In the model of Chapter If,

the resonant frequency was found). On account of this result,

there are important qualitative differences between this case

and the case where the combustion process is instantaneous

(Chapter II). Here, as will later be shown, the possibility

of broadening the range of unstable operating conditions by

nonlinear effects exists. This is related to the "triggering"

action explained in Chapter I. Another possibility is that

stable periodic solutions with finite amplitudes and without

shock waves are possible. This was not possible in the

model of Chapter II where the additional dissipative mechanism

was necessary to maintain periodicity. The approach of the
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analysis of Chapter III wil_beto llnd a periodic solutions

of finite amplitude without shock waves and, then, determine

the stability of this periodic solution. Instability of the

periodic solution will indicate the possibility of "triggering"

action.

Many of the assumptions made are identical to some

of those of Chapter II and produce similar simplications in

the analysis. The assumptions are:

(i) The flow is one-dlmensional.

(2) The chamber cross-sectional area is constant.

(3) The chamber is very long so that the configura-

tion is well-approximated by the limiting cases of zero-length

convergent portion of nozzle and of concentrated combustion

zone at the injector end of the chamber.

(L_) Flow is homentropic; i.e., there are no shock

waves and no entropy waves in the chamber.

(5) The gas in the chamber is calorically perfect.

(6) The Crocco time-lag postulate is made. Through

this postulate, the characteristic time of the combustion process

is introduced to the analysis.

The time-lag postulate is presented in Ref. 1 (where

a linearized theory is developed) and is extended to include

nonlinear terms in Appendix E. According to Crocco, the con-

cept is that the rate f of the combustion process (as experienced by

any particle) is sensitive to the fluctuations of thermodbnamlc
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properties over a period* of time _ prior to the instant i at

which the particle becomes burned chamber gas. It is assumed

that the time integral of the rate function over the period _

is constant. In other words, some entity is accumulated at the

rate f until at time t , the critical amount E necessar_ for

complete combustion has been accumulated. _is the period of

accumulation such that

The nature of the entity is never specified and the relation-

ship between f and the thermodynamic properties is not known

exactly. So, clearly, this is a heuristic approach.

The fluctuation in f produces a fluctuation in

which allows the value of the integral to be constant. In

particular, the more rapid the combustion process (f increases),

the shorter the time of the combustion process (_ decreases)

and vice versa. Of course, the fluctuation in f is related to

the fluctuations in pressure and temperature. The fluctuation

of _ , therefore, is related to the fluctuations of the

thermodynamic properties at the combustion zone.

The fluctuation of the mass flux emitted from the

combustion zone at any instant _ is related to the periQd _ as-

sociated with the particle completing combustion and being

emitted from the combustion zone at time _ . The specific re-

* Note tha_ _ is actuall[, a time period or duration of the
pressure (and temperature) sensitive portion of the combustion
process. Ic _lll appear in the equations later as a time-lag
only due to the perturbation scheme.
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latlonshlp as developed In Ref. i and Appendix E Is

{nb(t) : 1- d_(t)

_i at

where _nb is the ma_s flux of burned gases emitted from the

combustion zone and _i is the mass flux injected Into the cham-

ber (assumed constant).

The fluctuation in mass flux _:b may now be related

to the fluctuation of pressure and temperature. This relatior_

shlp describes the feedback of energy to the oscillation. Dc:-

tails of the formulation are presented in Appendix E. The re-

sult expressed by Equation (E-17) will be used as the boundary

condition at the injector end of the chamber. This boundary

cohdltlon is needed to solve the governing equations of the

instability phenomenon in the combustion chamber.

]<uturally this heuristic approach leaves much to

be deslred. It can only be justlfled on the following bases:

i) At this time, the nature of the combustioP

proce_ ls _:ot completely un{_erstood even for steady-state

th I e d-operation. In particular, e m_n_Jer' in which energ_ ls :_ _

back i '-,_ osc .,._o the illatlon of t_e chamber gases by the con,bus-

tion process i_z not k_,o'..:nfor certain.

"_ _ of t},,_-,off-resonan< freq cr_<_{esin predlc_in::L the ma%<nl_._,<._eo ....

and the location of the stability limits. Agreement between

theor_y and experiment is reiD good despite the deliberate
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naivete of the conception of the time-lag postulate.

The same nondimensionalization scheme as used in

Chapter II is used here. (See Chapter I, page 13).

The equations of motion which describe the wave

phenomenon may be transformed to characteristic coordinates

and perturbed in a power series in some amplitude parameter

as done in Chapter II. Again, the one-dimensional, un-

steady equations of motion for a perfect gas in a homentropic

flow field through a constant-area chamber yield the compati-

bility relations as follows:

!

(1)

Here, these equations apply to all orders in amplitude.

Each member of the family of characteristics with

negative slope (in a t vs. x plot) has a particular value of

the parameter _ while each member of the family with positive

has a particular value of the parameter I' OQ, and /slope

now become the independent variables and x and t become dependent

variables such that

a : a {_, P

t-t _._
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Now, Equations (i) may be rewritten as partial differential

equations

. _- + 2_- o
_-, _ _

_-_- =o

_ - Cu.- _) p.pt

Writing the perturbation series, we have

(_)

These series are substituted in the system of partial differen-

tial equations and the resulting system is separated according

to powers in _. The final set of equations is

Zo = constant; 0-0 :
constant . 1

where i = i, _, 3, etc.

=0

(3)

(4)

3_ D_ D_

(5)
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(6)

It is immediately shown that _, ui, x_ and _ are governed

by homogeneous linear wave equations. If Equations (3) and

(4) are differentiated and properly combined, the final forms

obtained are

-o

-- O

Similarly, it can be shown from Equations (5) and (6) that Xl,

tl, x 2, t2, etc., are governed by inhomoger]eous linear wave

equations. If the analysis had been conducted in a space vs.

time coordinate system, the coefficients a i and u i would have

been gover_ed by inhomogeneous wave equations whenever i_-2.

This attainment of homogeneity is a most important simplifica-

tion resulting from the transformation to characteristic co-

ordinates.

The solution of the wave equations which are equiva-

lent to Equations (3), (4), (5) and (6) requires the statement

of initial conditions and boundary conditions. Concerning the

solution for a i and u i, a boundary condition will be given at

the nozzle entrance and another boundary condition at the com-

bustion zone. Initial conditions will be considered in an
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arbitrary functional form. Eventually, the initial condition

will be replaced by the cyclic condition. The conditions on

the solutions for Xo, to , x l, tl, etc. will come from the

numbering system to be chosen for the characteristic coordinates.

The numbering system should be chosen in the most

convenient manner. Since we are searching for solutions wher_

in the flow properties are single-valued, continuous functions

(no shocks) of space and time, it is desirable to have a co-

ordinate transformation which is single-valued and continuous.

This will be different from the case of Chapter II where shocks

were present (there the transformation was multi-valued). If

care is not taken, multi-valueness of the transformation could

be introduced by poor choice of the numbering system. This

point will be demonstrated later.

As shown in Figure 8, the values of an _-char_cter-

istic and _-characteristic which intersect at x = 0 (com-

bustion zone) are set equal. The value of an _-characteris-

tic is taken to be greater than the value of a _-characteris-

tic by one unit in their intersection at x = 1 (nozzle entrance).

Also, at the initial time (t.O) the values of _ and _ of the

characteristics intersecting at the point x = 0 are both taken

to be zero. These result in the following conditions which will

be applied to the solutions for x and t.

x . 0 at _=/F

x -_ 1 at _ =_+/8

(7)
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Note that here no distinction has been made betweenregions

in the space vs. time plot and only one _,_ sheet is con-

sidered. Of course, this differs from the analysis of Chapter

II where different regions and different _,_ sheets appear.

One more condition on the solutions for x and t

is required. This is an initial condition and can essentially

be reduced to a statement which gives the value Of an _-charac-

teristic at its intersection with the _O characteristic

(See Figure 8). A criterion for the single-valuedness of the

transformation is that _ be a monotonic function of the x

position of the intersection with the _- 0 characteristic.

In view of this criterion, a numbering system is chosen which

states that to zero order, the number _ is given by the value

of x at the intersection with _= 0 characteristic. That is,

The higher order statement will be made later in an implicit

form which allows a smooth and continuous transformation of

the coordinates. ("Smooth" means analytic ever3_where).

SOLUTION OF THE EoUATIONS

Equations (3), (4), (5), and (6) can now be solved.

The solutions of Equations (), (5), and (6) will be it: terms

of the arbitrary initial conditions as explained in the pre-

vious section. First, Equatiors (3) are rewritten in the form

These possess the general solutions

- )/+-u o -- o ; ------_ = G'( "_
0 /--6_, 0o

(9)
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necessary for the complete solution of Equation (3).

Substitution for x and t from Equations (2) into Equations

(7) and separation according to powers in _ yields conditions

on the solutions of Equations (3), (5), and (6). The zero or-

der results combined with Equation (8) provide the conditions

These

conditions are:

Xo -- 0

Xo- i

to- 0

at _=_

at _ = l÷_

m

at _c--/_=O

at _=07 0 "_('

The above conditions are sufficient to deter_nine G o (_.) and

Fo (_) from Equations (9). The results are

Go = z.c
i d

Now, substituting for O o and Fo in Equations (9), we find

%
o /- _o (l>)

It is readily seen that Equations ( ) have the _eneral

solutions

Rewriting, we find

4 _ )" _-"

Note, of course, that ½.

are Riemann invariants.
L=O (=0 c

(ll)

The coefficients Pi and q i could be determined from

the boundary conditions and initial conaitions on Equatior:s (;,).

The boundaz_j conditions are given bj two relationships between
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the speed of sound perturbations and the gas velocity perturba-

tions. One relationship is given at the combustion zoDe while

the other is given at the nozzle entrance. Initial conditions

the values of the function oi(_)=r. _would give 9-5 along

_= 0 in the range o _--<I and a i along _._ in the

range -_ _-C$0 (or an equivalent statement). As developed
o

in Appendix E, bo is the steady-state "tlme-lag" in character-

istic coordinates. If there were no time-lag effects, the

initial conditions would only be given along _: 0 in the range

O_ _- _ _ . This point will become clearer after

the boundar% _ condition at the combustion zone is applied. The

solution will be found in terms of the arbitra_ function _i( _ )

where --_-_< _ ._< 1 . The functions Pi(_) and _i(¢_ )

where -_I and _-_> 0 will be determined b__ means of the two

boundary conditions. Later, the ©i(_ ) for all __ will be de-

termined specifically so as to obtain periodic solutions.

The boundary condition for the short nozzle states

that a wave is reflected at the nozzle with a loss in amplitude

due to convection through the nozzle but with no phasing or

dispersion. Whenever the length of the convergent portion of

the nozzle is negligible compared to the wavelength, oscillator7

processes may be considered as quasi-steady. This means that

the Mach number at the nozzle entrance stass constant (since in

the steady-state it depends on entrance to throat area ratio

only). In other words_ the gas velocity: perturbation is direct-

i_ proportional to the speed of sound perturbation. Use of

Equations (2) for u and a leads to the boundar_ _ condition

u i . uo ai at _= i_.2_
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where i : O, 1 2, etc. This condition may be written in a

more convenient form by substitution from Equation (ll).

= I_ so the functions are related as shown by

the following equation which is valid for allf.

 t+I) =- 1-r
Note the definition has beea made _-- _ _@ .

(12)

Since the coefficient i÷--'-_ is always less than unity and

real, a loss in amplitude with no phase change in reflection at

the nozzle is indicated.

The boundary condition at the other end of the chamber

has been discussed in the previous section and is developed in

Appendix E. If this boundary condition at the combustion zone

as expressed by Equation (E-17) is combined with Equation (ll),

the result is written as follows:

c

(13)

where the Ri_ are defined in Appendix E. After separation ac-

g

cording to powers in C , the R i terms will appear as inhomo-

gereous terms; i.e., they will not contain Pi and ©i but will

contain ai_ I, Ui_l,ai_2, ui_2, and so forth. These inhomogeneous

terms depend upon lower order a i and u i and therefore, accord-

zn_ to Equation (ii) they depend upon lower order _ and oi"

Note, also, that the R i' contain _ and _ so that the com-
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bustlon zone boundary condition Is related to the solutions

of E_uations (5) and (6). This dependence upon _g is to higher

order, so Equations (5) and (6) are not really coupled to

Equation (13) after separation and the solutions can be found

in an orderly manner.

Equation (13) describes the changes in amplitude and

phase due to wave reflection at _he combustion zone. At the com-

bustion zone,energy is added to the oscillation by the com-

bustion process. Since there is a finite time period associ-

ated with the combustion process (represented by the las bo

in Equation (13) ), a phasing appears in this e1_ergj addii..ion

process. On account of this phasing effect, there can either

be an increase or a decrease in amplitudc due to reflection al

the combustion zone.

If the function _i(_" _'-I _._-_._ were _ziven i_

the rari[e O_ _ I and if the function al(_,y)= -_--[p_/_']*_

were given in the range -bo_/_,_< C)j E<_uation (13) could be

 olveforh(p) In therange I .

E,4uation (12) could be u_c:d to sol_e for _<i( _ ) in the ranze

I _ _- _ _ . Returning to Equation (13), Fi(_) would

be determined for /_/ _ _ . It follows that Pi and C i

could be determined for all higher values of_ and _ b,j alternate

use of Equations (12) and (13).(Note that R i' is always con-

sidered as known since after separation, it is an inhomo,}Leneous

term which could be determined from lower order solutions).

This above approach is not the one taken here. Instead, we

shall seek Pi(_) and _i(_ ) which satisfT E._uations (12)
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and (13) and are continuous and smooth (analytic everywhere)

functions of _ and I . Periodic functions are the special

type of these smooth functions in which we are most interested

since these solutions represent e_uilibrium conditions.

Using Equation (i_) to substitute for Pi(/_ ) in

Equation (13), we have

o L o t--I

The above algebraic difference - et:uation i_ considered as ap-

plicable for all _ (-_ _ _ _ ). A smooth function

is sougint as a solution of this e-uation *:'or each coefgiclent

C+i. Or.ue <+i(_) is determined, then eitl,er E,iuatior_ (12) or

(13) ma_ be used to solve for Pi(_). Knowled:ge of both <i

and Pi yields a i and u i through Equation (ll). Before E::jua-

!

tion (l'_) can be solved for qi(/), R[ must be determir;ed for

[ _ _ . These depend upon _ as shown in Appendix E. 3o,

prior to a solution of E:_uation (I:_) for qi where t -- 2 or 3,

E_uations (5) and (6) must be solved for tI and t2.

Using the solution for to as given by E_uatio:l (1)),

E_uations (5) maj Le rewritten.

=
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Substitution by means of E,:iuation (ii) has the following result

r_, -_,]: _ ,,_ , -

÷ _ (,-.o)' - ÷ 0-_)

These equations can be integrated to obtain

,__, + _ = _, _,_+ (z)Jz:- c,_

where FI(I_ ) a_]d GI(_ ) are the l:omojer.eous solutions. The

_our_darj conditions or, x I and tI will be used to determine these

fun; .ions. Substitution of Equatior, (2) i:_t.o E,.:uatiorJ (7) ,and

:.',epara_.io_ of t_,e first order term_ ielus t!_e followi_:g c¢,_.nda_T

conditicns

x I = 0 at _=/F

tI = ,,) at _=_=0 (l<_)

Application of the first condition on Equations

(15) has the result
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The second condition yields the result

(18)

CombL_ation of the first and third condition yields the follow-

ing

f/(o) = G, Co) = o (19)

If initial conditions ,,ere given such that the func-

tion GI(_) were known in the range O_-_ J , Equation (17)

could be used to calculate Fl(/) in the range O_/_._ _. Then,

Equation (18) could be used to determine GI(_ ) in the ranze

Ig'_-_" _ Obviously,• by successive alternate use of E_ua-

tions (17) and (18), Fl( A ) and Ol(_ ) could be determined for

all o_ _ I and all _,0. PI and 01 would be calculated

separately from Equation (12) and E<iuation (14) (after sep-

aration) and are considered as known in the above-mentioned

calculations• Once F I and G 1 are known, Equations (15) jield

x I and tI.

The specification of Gl(_ ) for 0_ J

Xj

the specification of the function i__o * Ca
means

essentially

along

_---O . It tells us to first order; when combined with Equa-

tions (2), (8), (15), and (17), where a characteristic with a
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given value of _ intersects the/_-O characteristic. This

information is related in a pertinent manner to the numbering

s_stem for the characteristics since the inverse statement

would give the value of _ for the characteristic that in-

tersects the_:o characteristic at a given x position. Ther_

fore, the specification of Gl(_ ) in the range o_-_) is ac-

tually a specification of the numbering system.

The specification of Gl(_ ) must not violate the

conditions (16). When these conditions are combined with E-:ua-

_ions (15), it is seen that necessar_ conditions are

oi(o) 0; Ol(1)- tl(l,0)

A straightforward specification will in general, violate

these conditions. For example, GI(_) - 0 'for o._ _._j violates

_he second necessary condition. This can be shown to involve

a double-valuedness of the transfor_nation. The choice of r,um-

bering system such that ¢_= ]g along /:O does not violate

these conditions. (This would mean when combined with Eouation

(8) that x I - 0 along /_=O and, therefore, by means of E_uation

(15), we see that GI(_) = tl(¢_ ' O) ).

The approach taken here will not involve the definite

specification of the initial conditions; i.e., GI(_ ) will be

left arbitrary in the range O_ _ _ . Instead, functions

F1 and G 1 will be sought which are vet: smooth for all _ and

I . This would introduce much simplification to the coordi-

nate transformation. The same functional transformation would

apply for all _ and/_ . If Gl(_) were specified apriori in

the range O_ ¢_< ! (e.g., _- x along /=O ), then the
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functional form of the transformation would differ for dif-

ferent ranges of the values of _ and _ . In addition, and

more importantly, it would be extremely difficult to determine

whether a solution is periodic due to secular terms appearing

in the transformation.

Subtraction of Equations (17) and (18) leads to

the result

If consideration is taken of Equations (12) of Chapter II, the

above result agrees with E4uation (16) of that chapter. The

agreement exists because Xl(_ ) and tl(_%_), if properly com-

bined, are continuous through shock waves to first order.

Once P1 and OI are determined, the above algebraic-

d_fference equation could be solved for G1. Knowing this func-

tion, Equation (17) would Field F1. If the functions GI, PI

and C1 were smooth, it is seen that the coordinate transfor-

mation functions x(_,_) and t(_,_ ) would be smooth to first

order from E,_uations (I0), (15) and (]7). This allows the

same transformation function to be applied for all values of

and/_ . In retrospect, it is seen that, in effect, the

initial conditions for E_luations (51 or, in other words, the

coordinate numbering system was chosen such that x(_ ,_) and

t(_,_ ) would be smooth functions to first order.
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In order to solve for G 1 (_), it is convenient to de-

fine a new function _f such that

4- @' (_) _ +"

+ s-_.__._(__L _ Q (z)9_
4 l+_z o i

0 (21)

Note that since GI(O) : O. we see that _i(o)_O . Substitution

of the above relation into E{uation (20) and consideration of

Equation (12) yields the result

,x,.t(1..f) -._,r/6]= -

(22)

Substitution for F I and G I in Equations (]5) by means of Equations

(17) and (21) leads to the following

0

_- = _ ,,t <,'F)+.

3-_ _ I4- (l+-"_J'o_

+-J 8 .,"/,J (_-A.)-
4 (,.%.)'

Q,(z)d_ + (,__) P, ,_
G

o 0

_, +t-, =X
I - l./.,,

0
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These two relations may be solved for x I and t I to obtain

_/._ I- U.o z

£ 2

(23a)

4 Q, (z) Jz + L,-% /
o

(23b)

After PI(/_) and 01(4 ) are determined from Eauations

(12) and (14), _I may be determined from Equation (22) and then

Xl(_,_ ) and tl(_/_) may be determined from E:juations (23).

Similar treatment could be given to all x i and t i, so

that the coordinate transformation would be smooth to all or-

ders. Considering x 2 and t2, we may rewrite Equation (6) as

follows:

We substitute from Equations (i0) and (ii) to obtain

I-%

(24a)

(2_b)



-54-

The derivatives -____a_and

from Equation (23b) to be the following:

34 Z

_s (_ -/_],-J-"o_-_-_a'

are determined

P, (_)
I,,.%" ] +

L_L_. z
3'-'#"_. {,.% ) Q, (_)

,,=o dA, _) ____/-_=,c_> E-m)_7-
dA' - , L.,----aTZ-,._

- _'+_ (_-W) __z_, d__#P,÷
f /,-_

These two relations may be substituted into Equations (24a)

and (24b). Integrating Equation (24a) and noting A (o)- O

we find

%

3g. /_.. _ &_

(,+%Y

(25a)
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where F2( / ) is the homogeneous solution. Integration of

Equation (24b) yields the result:

0

(25b)

where G_(oa )is the homogeneous solution. Boundary conditions

aid in the determination of the homogeneous solutions. Com-

bination of Equations (2) and (7) and separation according to

powers of _ results in the followlns bounda_i conditions

x 2 = 0 at c_..-,d'

x2 " 0 at _= l_-_

t2 = 0 at _.t,,,_'=_

Application of the first condition

has the result

to Equations (tSa) and (25b)
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(26)

Application of the second condition to Equations (25a) and (25b)

yields

+_r__Es,____._, (,+f) x, _)- ,_<_:
g ;-_'o I+_..
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o

J

4-
0 ,-_"_')-oz,.'_'-,-.0_, o.,,,) _,r/) ._

(_7)

Combination of the first and third boundary; conditions Nields

_he result

F2 (o) : as (o) - o (_81

Subtracting Equatio,n (°6) from (27), we flnd
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G, 0,,_)- % 9_)-
(,-%) 2

l÷#

, u_=o ct,J rp)

+ (___÷l)_
3z (,-_ 9

0

+

I-- IX. 1
0

The same approach is used for the solution of

and t2(_,_ ) as was used for the solution of Xl(_,/#)

and tl(_ ). Instead of specifying initial conditions

= O , the above equation is solved for G2(_). Once

x2, and t may be found from Equations2this is known, F 2,

(29)

x2 (,_,#)

and

along
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(25a), (25b), and (26).

In solving for G2( _ ), it is convenient to define

a new function _ C/_ such that

, (r*,)(3-=) ,,'-"" y¢

(30)

Since O2(O)=O and _(o)_)a , it follows that _(o)= 0 . Substitu-

tion of the above relation into Equation (29) and use of Equa-

tions (12)and (22)to substitute for Pl(_ )and_(l_)-_ _)3

leads to the following equation for _

(31)



where the definitions are made

,, -.(r+ 0(,-_)

,, ._ -'t r,,)b-_ J *'o

Substitution for F2( / ) in Equation (25a) by means

o£ Equations (26) and (30) has the result

o
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Equation (30) is used to substitute for

with the final result:

G2(_ ) in Equation (25b)

0

I-% '
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These two relations may be solved for x 2 and t,o. The result

x 2 is as follows:

L,.% s-%

+7_-

for

2r J

(32a)

The followin_: result is found for t,

-A)
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+4 (1,%) _ W "/_) (32b)

Once PI, °i' P2' and 02 are determined, Equations

(22) and (31) yield _ and _% and then Equations (32a) and

(32b) yield x2(_,_ ) and t2(_).

FZRS_O_R soL_!oN

A first order solution will be found for Equation

(14). After separatio_, the first order coefficients of that

equation are related in the following manner

(33)

If it is noted that r and s are constants and i is

the imaginary unit, a solution of the form

is found to satisfy Equation (33) if n, bo (or _), s, and r

are related in a specific manner. (Note that _ and u are
o

parameters in this relationship). The relationships are found

b2 means of substitution for Ci in Equation (33) to be as fol-

lows :

r.±_s

f*=,O-r.)3 - I ('- ÷
,- 0-1_o) .t isU-bo)

Ke. e. + %'.% s-"6o ;_&oe =0(3_)



-64-

Consideration of the upper or'lower sign yields identical re-

sults so that only the upper sign is u_ed here.

We are primarily interested in periodic solutions

which result whenever _ m O. If Q1 is periodic, Equation (ii)

and (12) indicate that Pi, ui, and a i also are periodic. In

the analysis of periodic phenomena, it is convenient to trans-

form to a coordinate system where the period is equal to _YT.

The rules of the transformation for the present case would be

In this new coordinate system, the period is known,

but the transformation parameter S has to be determined. This

parameter S is actually the angular frequency in the old co-

ordinate system. The frequency will be a function of C in the

old coordinate system but is always _FF" in the new coordinate

system which produces a good deal of simplification. In essence,

this transformation is identical to tLe one performed in Ap-

pendix A.

Setting r-O and transforming coordinates, we ob-

tain the following from E_uation (34)

o (36)

The above complex relationship represents (after sep-

aration of real and imaginary parts) two relationships between
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S, _ , and

denoted by

_, and n

n. The values which satisfy these relationships are

s(O), #(o) and n (°). These are the values of s,

which produce periodic solutions or neutral oscil-

lations for infinitesimally small perturbations since Equation (33)

gives the asymptotic behavior of Equation (14) as the amplitude

parameter goes to :ero. These two relationships are

$c@_ -,K[1*_oC,-¢_°b__¢ - L,-_.(,-r_'°';]+

+ rn, '°) u.,, K ,.,,,.¢, Cs('_- ¢,0_) +. rn. (°_ _ _ _ '') = o

( l- rn ">)..] (o) ¢o.) C9 ¢o)_ _(

If terms of the order ___Ll _ are considered as negligible com-

pared to unity the above relationships* simplify to the following

forms

sin _ _ so')

fl( _.t-Icos co) = /- _"_-Vo)

Neglecting terms of the order
o

found to be

s '°_ _ _X -" _,- R,F_.'°_z_o[;-0- _,._.,_ '___J"/

2
u , the approximate solutions are

*These relationships have the exact solution

If

instead of the approximate solutions.

(37)

s '')- - [_+-d C_-_",-'°_t (r,_'°YJt_t-,) *-_,,o (,-r.:")(_,,)

¢._ ¢ <°_--- _,+,,: CO-r,e'_)' _(r_'°,2 ' .]._(K'-,J - _. (,-r_(_%,2
_ ¢_<"% [,¢,..,.% _,-r,,'°_)(Kz-O_l

u o is not so small, these exact solutions should be used
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m and_are positive integers (0, 1 2, etc). _indicates the

approximate number of half-wavelengths contained in the chamber

length. That is, for the fundamental m6de _ = l, for the sec-

ond harmonic s 2, and so forth. The possible frequencies of

oscillation equal the natural resonant chamber frequencies plus

(or minus) a small correction (of the order of the Mach number)

due to the time-lag. The resonant frequencies only occur whe_

ever t_ _ . Since _c_ is a product of the lag

_o (°) _)
and the frequency S , it represents the ratio of the

time-lag to the period of oscillation. Therefore, it is seen

from Equation (37) that the neutral oscillation occurs whenever

the time-lag is approximately an odd multiple of one-half the

period. It is also seen that $C_and _°)are double-valued

(o)
functions of _ .

If te_ns of the order of Uo2 arc neglected, one can

readily see by tracing back through the transformations that

co) ,, 2 -- _ <

where _is the angular frequency in time coordinates. Subs_i-

tution into Equation (37) yield_ the result:

(38)

These are the identical results found by Crocco through a small

perturbation analysis. This is perfectly understandable since

as _--_0, the perturbation becomes infinitesimally small. How-
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ever, whenever _ is not infinitesimally small, the relation-

between s (or_), _ (or _), and n will differ. It isships

the purpose of this analysis to find the relationship between

s, _, n, and _. This will result from analysis of the non-

linear terms. Only to lowest order in C, will the results of

that analysis agree with those found by Crocco since modifica-

tions occur when finite-amplltude oscillations are considered.

It is important to note that there is a "continuity" between

the results of Crocco's small perturbation analysis and this

no_]_.inear analysis as indicated by the identity when the amp-

litude parameter goes to zero. The nonlinear modifications

to Crocco's re_ults will be shown to be order _ or hIzher.

As can be seen from Equations (37) or (38), the

chamber may oscillate at various frequencies depending upon

of ¢'"(or and Fi ur 9 ourve 
of _(e)--\,_. ;Zt-)for various modes of oscillation. A stability

nnalbsls (see Ref. I) shows that n small perturbation grows

(_:_scaOic) on the shade_ side of these curves while it decaFs

(stable) on the other side. As already mentioned, the small

_-ertur.bation would remain the same size alon_?_ _his line.

Fi[.l'uI':_9 sr;cws wide ranacs of _e _ %Ic . n plot wiiei'e C n Z _' I

one ....<,de oY o_:.:iliation occurs; (.g., if _-- 1 and n sli_]htl.y

_ttk
greaLer than 4%" , only the flnJamental modes occur. None

of the higher harmonics are expected (to this order in _ ).

T_e resul_s reported in Ref. 2 show that the ranges of _ and n

where this non-superposition occurs are the ranges of practical

interest. Therefore, our nonlinear analFsis will be simplified
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by assuming that to lowest order in _ only one harmonic ap-

pears. All other modes are stable. The amplitude of that

harmonic which appears is defined as _ . This gives specific

meaning to this parameter which until the present has had only

a vague meaning. The oscillating part of Q(_) is now _ _

plus terms of order _.

co), co)
Given n , s may be determined from Equation

(3?). Now, QI(_) is known and Equations (ii) and (12) yield

u I, a I, and PI" The results are

_, =_" e. _. -6 _ Ka a"i

i -,:,

(39)

Note that as points in the _, n _lane _re considered which are

slightly distant from ti-_e ¢'o vs. cur_e, s becomes dlf-

ferent from sc°) in the above relations. Furthermore, C may

be different from zero so that the higher order terms become

important.

Next x I arid tI will be determined. Substituting from

Equation (39) for QI(I+/) on the right-hand side of Equation

(22) we have



-69-

The solution is readily found to be of the following form (if

the condition _i(0). 0 is noted)

(4o)

where the following definitions are made for the complex con-

K a _-.-

K-

1

-il

a'JD

I% .= - IG l-e.+l.4, II

,+%)+ ÷ (+-u.
0

L+,< , ?j+U.o)t. -I- O.u..) z

Note that the solution to the homogeneous part has been omitted.

Any function with period s may be added to the above solution

and Equation (22) is still satisfied. As is seen from

Equation (21), this function would appear in the same additive

manner in tlle solution for G 1. This means therefore that many

specifications of Gi(_ ) in the range O_ _ 1 are possible

which would give a smooth coordinate transformation for all

and_ . We shall consider the simplest one by setting the

homogeneous solutionto Equation (22)equal to zero.

, s z.LTr.
Equation (3T) shows that as n(O)--_ 4

Therefore, both K and _%o to infinity as the resonant fre-
I

quencies are approached. This solution is not valid whenever

s = _. Returning to Equation (22) and setting s - Z_, we

have
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The forcing function on the rlght-hand side has the period _.

This is also the period of the homogeneous solution (4C,_)._ (/6_I

so that the infinite amplitudes of the periodic solution are due

to the forcing function having the resonant frequency. The

proper solution in this case is not periodic but instead is

given by the following
.!

This means that corrections on the location of the characteristics

in x, t space oscillate_with the same frequency as the flow field

except near the resonant frequency. Near the resonant frequency

a secular solution is found which indicates continual distortion

and may be interpreted as meaning that a shock must eventually

form before the solution can be periodic.

For our purposes, it shall be assumed that the frequency

is sufficiently far from the resonant one and the amplitude

is sufficiently small to obtain periodic solutions without shock

waves. If these were not so, e.g., _ large, double-valuedness

of the coordinate transformation might occur indicating shock

formation.

Using Equations (39) and (40) to substitute in Equation

(23a), we obtain the result

%= + +_,._o IF. e (e -e _ .e -a
"LS16 /.% J-'% JL a z_-/ e - I

_- e, -I- K _J-U'o else +- e.
#" b¢'o | "P "_o

(41a)
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Note that consideration of the transformation (35) has been taken.

Similar substitution in Equation (23b) has the result:

- fit< 1_'_'°7 is "'iJ._ "ti_7
-_, _ I- l_o + I-¢ l /- e. _

d

:- ,-__i _K c"_T}_e"i" & i_ ,) + , )' (i_0+% -l)J

+[e -_g
I-U.

o

, , F, o-`' (_-' -,. , -,)2"t-

(I-t.i6)Z (l'i,. _ ,,)l

(_ib)

Note from Equations (39), (41a), and.(41b) that PI, Q1 ,ul' al,

x I, and tI are equal to a complex function plus its conjugate.

They are actually real quantities but are left in this form for

the purpose of simplifying operations which involve these quan-

tities.

From Equations (2), (i0), and (35), it is seen that

5

I-I,_
o
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_and I may be found to be the following

-

Substitution of the above statements into Equations (41a) and

are periodic functions in time at fixed space positions, that

z

is, neglecting terms of order _ , a displacement (in time vs.

space plot) equal to the period of oscillation (x held constant)

results in a certain definite change in As and/. The change

is the same for both _ and Fand equals the period in charac-

teristic coordinates. These statements are true regardless

of the space position or the initial time. The implication is

that there is no convergence of the characteristics (Ehock

formation) provided that _ and C_ are not so large as to

cause double-valuedness of the transformation. Note that if

the oscillation were at the resonant frequency, the periodic

solution would not be obtained.

SECOND ORDER SOLUTION

The primary interest is in finite amplitude oscillations

where higher order effects are important. In general, these

oscillations occur at values of _ (or _ ), n, and s(or_o)

, .,,.) eo)
other than those values at the neutral stability line_ _ 6
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We shall be concerned with values of these parameters close

to those values on the neutral line. The amplitude of the

oscillation will be assumed to depend in some continuous man-

ner on the displacement from the neutral line in a parameter

plot (e.g., _o vs. n). This will be implied in a convenient

manner by writing the parameters as a series in _ about the

neutral line value. The series are written as follows:

9<'
_,=a -e-C +C +
o _ 0

C'} I. C_)
S-_ S <'°) _GS +. -C .S q-. ....

CO cd co3 CO o_ £.a.+- _.. -+- coce_

This of course, is m_logous to the elgenvalue perturbations

of Appendix A. Here, the parameters are not eigenvalues in She

strict sense because they appear in the boundary condition

(combustion zone) and not it] the differential equations. It is

also analogous to the approach of Chapter II where the amplitude

was assumed to depend upon the displacement from the neutral

stability line (actually a point since only one parameter CO a_

pears ).

The transformation (35) is applied to Equation (14)

and the series (42) are used to substitute* for_, n, and s.

* A _ayl6r serles expansion is used whenever the series appears

in the argument of a function. For example, Q:C-S'l-'_)-- ,_. _r_(_r So'") +)*0/t+(_)).._ u,
Q':('+'"+"_"')"_'_-++o,P,,,_, +_)E(+s'",--'-) l*I _ ,., -'-_,JCe,+'?]+_e ;

.,e) (:,.) £ c-3
_= ?1. + g';'t + ----C_. . ....
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Now all orders may be separated according to powers in

The second order equation is written as follows:

g •

(43)

where the definition is made

t j. (0)

-]r-_'_ _-_
dO, CO)

,.,+ . ,.,+ _/,o,),

First, R 2, is evaluated from the first order results.

Equations (39) are used to evaluate a I at the point _,

(o-,-A/_)_ _ _o _o_n_g-C, ,_-/ o_/-_ ,A-_o'°_ )
and ?.L, _; _, _ . Equation ("-,lb) i::. u<ed to evaluate t1

at t],ese same point_. The result of the._e substitutions ir_

Equation (E-17) is the foilowizlg

where the following definitions apply
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_(:_-l') K I+_.o Ec.o_

_ _._"(3-r) ._-,,.o_[]_
&4. I ÷ _o E
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6+

+ 3#.

9._ _ _"_ _- _'n )
J_ /&
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It is understood in the above relationships that s represents

s,@) ¢ _,_ _6) In order to be, represents and n represents n .

consistent the inhomogeneous term should be evaluated with zero

order parameters. Any error would be of higher order and

should be added unto the inhomogeneous terms of the higher or-

der equations.

Combination of Equations (39) and (44) and the defi-

nition following Equation (43) yields the result

@

0 j_

-_(5'°_-,d '°')
-iEKe., +e ._. 2

(_45)
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Now Q2 must be a function such that whenever operated

upon in the manner indicated by Equation (43), another function

will be produced which satisfies Equation (45). Since _ is de-

fined as the amplitude of the lowest harmonic, this lowest

harmonic can be contained only in the ©i term and not in the

©2 term. This lowest harmonic ( i_, -_ ) is referred to as

the first harmonic even though lower values of s might be pos-

sible if n and _ were in different ranges. With this
o

definition of C , 02 contains only a constant plus the second

harmonic (_ J

The difficulty of the appearance of the first harmonic

in the inhomogeneous part of Equation (43) is overcome bj setting

its coefficient equal to zero. This gives a complex linear

homogeneous relation (or two real relations) between n (I), s (I)

and _O). These linear homogeneous relations are trivial how-

ever since they only allow displacements tangent to the zero

curve in a _ , n , s plot. (This is analoguous toorder

the m = 2 case in Appendix A). No generality is lost b_

setting c,_ _c0_= _C,_=O • This means that the perturbations

of n , _ (or _ ), s (or _ ) will be of second (or higher)

order.

With this trivial result for the first order perturba-

tions of the parameters, it is seen that R2 and R' are2

identical. O may contain only a constant term and a second
2

harmonic term. Assume it is of the form

(46)
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Use of Equations (44) and (46) to substitute in Equation (43)

yields the result

-p

where the following definitions have been made

)j <o_)Zr _- K +_ (#-r_ <°> _ z5 -

Separation of the above equation according to coefficients

of _ _ e and _ yields the three equations

_ - 2. _. C_,
I-l#"

The first and second relation are actually identical and yield

the same results. Each is complex however and actually two re-
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lations which may be used to solve for Ar and Ai. The third

relation is used to solve for Cr . (a r, a i, and cr are known

from lower order analysis). The final results are

f
_" I_. O [ "- .

k

If the definitions are made

Equation (46) simplifies to the following form

(47b)

(48a)

Substitution in Equation (12) and use of Equations (ii) _ields

the result_

(48b )
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In general, S _$ in the above relations but the difference

is of order _ _. Since these are second order coefficients
4

given above, the effect of the difference is of order C which

will be seen to be negligible since the analysis will not in-

clude fourth order terms. So, for our purposes, $_ S ¢°_ in

the above relationships. (This is not so in Equations (39)

where the difference produces a thi_'d order _±_-_-ctj.

Equation (48) show that the second order effects in-

clude the addition of a second harmonic to the waveform of the

oscillation plus a correction to the mean pressure and velocity

in the combustion chamber. There is a phase between the first

and second harmonic terms represented by _ . The amplitude

of the second harmonic term is proportional to _XA and the

magnitudes of the corrections to the mean flow conditions are

Cproportional to C_ . (There will be an additional cor-

rection for the mean pressure produced by a _ term as will
!

later be seen).

Now, x2 and t2 can be determined by solving for
Z

from Equation (31). Equations (39) and (48) are used to sub-

stitute in that equation (with consideration given to the trans-

formation (35). Then Equation (31) is rewritten in the fo]lo_

ing manner:



-82-

with the condition

be the following

X (O) = _ . The solution is found to

with the following definitions

(49)

: c + _?_+.,.,
£S ill .J

• t-_.

LTote that v I and Vl* are conjuoate.

In similar fas_JlOi_, to tl:e solution for \ , the
!

homogeneous solution has been omitted for the sake of simplicity.

The addition of the homogeneous solution would mean a change in

the coordinate _umberinpi s_stem as can be seer_ from Equation (30).

Note that the solution for _ given by (49) goes to
&

infinity as S _I 77" where _ is an integer. This periodic

solution is invalid near the resonant frequency in the same man-

net that the periodic solution for X is invalid.
J

_!ow Equations (32a) and (32b) will yield x 2 and t2
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after certain substitutions° Equations (39), (40), (48), and

(49) give PI Ql' A I ' , Q2 and .' P2 , _ The associated dif-
Z

ferentiation and integration operations are tedious but straight-

forward so they are not given in detail here. Only the result

for t2 is presented here:

+ T [_ ++_,"',';+ -_ '<C,<,+" +,,-,",+++JJ-

- ,-+---,,+<,-°K.,"+_ ,+,+,+_.-'_-"le. +

_" iS)• 4- l*_u-o /_ + I-u.o._ j_KI __ J __

+ 3-_"

_ _(v+-,)(3-r)(_-u+)
_(J-%)"

['j, ,'5 -in -is ",.¢_,, - _)
5 L- -- _, -.;-e+ _ _@.

+++--0,.,-+,.,,j<+,>
o

o r.,-% + _p ,+%
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I"I,,iLil+ .----.---
it v,

,._° P.-_)- ¢,+_),

3-Y LAK_ L_a''S) "_A_ lr.t-i,, 6+,,,>K,_ +

,'-"L7'-"° c-"'_' ) >.7

- ' ,"(J-%)' T _ -e. i +

_(,+% s 1

_#_.Z._-_ [-_.i[_
L,1o-%9 + # -------__ "__-.-_----e. -IC,-%) _ _

li

,(_,+_)
+



•-8.5 -

Q

_. f.j_%)z 3Z

I - 1"4"o I

X(,-%)' s

(50)
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Three t)pes of terms appear in this expression for t2: periodic

functions, periodic functions tlmes the quantity _ - _A •

and terms linear in _ and _ . The first two types of

terms are the only types that appeared in the expression for

tI and xI and if properly interpreted, they indicate that if

andS(or _ and _ ) each change by an amount equal to

the period in characteristic coordinates, then the x position

is unchanged and the time changes by an amount equal to the

period in time coordinates. The presence of the third type

of terms (linear in _ and _ ) indicates a correction

in tile time period and they should not be interpreted as secu-

lar terms. This correction is a second order effect which in-

dicates the wave travel time changes from that of a quiescent

field whenever finite amplitude waves are pre_ent. A signifi-

cant part of this change is attributed to the change in the

mean conditions in the chamber (see Equation (48)) but there

is more than Just this as can be seen by setting _ _ O in

Equation (50). Tllese second order terms which are linear in

_ and _ should be combined with the zero order result for

to and would ir_dicate a change in the averaLse slope of the

characteristics due to the finite amplitude oscillations. If

_ . _ is held constant and _ and _ each are changed

by _', Equation (50) ahows that the change in t2 is the fol-

lowing
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If C_ and uo were set equal to zero and s were set

equal to an integral multiple of _ TK , the above term would not

vanish. So it must be explained by more than change in mean

conditions, nonlinear effects coupled with asymmetry off flow,

or off-resonant oscillations although these all have important

effects on the above term.

_, _n d (ui_ a )_t, terms in Equations
If the (ui+a i)_ _.. I _7

(6) are examined, it is seen from the results of the first order

analysis that each is the product of' two first harmonic terms.

This is clear from Equations (39) and (41b). The products

each are therefore, a seco_d harmonic term plus a constant.

After Equations (6) are integrated, the constant terms produce

terms which are linear in _ and _p . The physical ir]ter-

pretation is that the wave distortion (a first order effect rep-

resented by nonzero tl) combines with the finite amplitude (a

first order effect represented by a I and Ul) to produce a sec-

ond order change in the wave travel time. Consider a given

characteristic, _ay a P-characteristic. At each instant its

slope is affected by the value of the invariant associated with

tile i_]teresting C-characteristic since

where 0o is the steady-state value of the Q invariant and _' is

the perturbation. 0 o has the same value for all Q characteris-

tics. P i_ a constant for the given characteristic so O' is the

critical term which deter,mi_es the variation in slope. O' is a

trigonometric function ir] ci_aracteristic coordinates so that
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its integral over a period is zero. Due to wave distortion,

however, this is not so in space vs. time coordinates and

this integral of Q' may bc nonzero meaning that the integral

of the _lope, or in other words, the average slope, may be dif-

ferent from its steady-state value.

THIRD ORDER SOLUTION

It is necessary to perform a third order analysis since

the first order coefficients of the series (42) were found to be

zero from the second order analysis. The perturbations of the

parameters _ (or _), n, and s (or_) are therefore of second

order and the second order coefficients are determined by a third

order analysis.

If the series (_2) is substituted in Equation (14)

(with_'_=_'_=_c')=O), if the transformation indicated by Equation

(35) is performed, and if the third order terms are separated,

the following equation results

,__+_ o-<°_)7Q,c_<'_+_)-E-,<o(,-_>,'°>)__,(_)+

(51)
where the definition is made

. , {_,_,_ l_- Kq (','o>.,.N)- _I (_).+. K_>,(-_+ }-ts<°)J+4(_-¢

-'<7 +_o_'- "_-°')]<_°--_'<="<_)+w°'_D+=<'>_+_ - s_'°>7_<"'

+7 _..4__<,"<°' '°>) b]

The R_ term I_ given by Equation (E-17) and may be evaluated

by substitution for a I, u I, u2, a_, tI and t2 from E4uations

(39), (48), (41), and (50). These quantities are evaluated
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at the combustion zone; i.e., along the line _---_ (or

--I )' They are substituted in the exponential form for the

purpose of simplifying the associated operations. The R3

term contains many terms which will be evaluated one'by one

before Equation (51) is solved for 03 .

r/rL_._ _ .l_ Q.
of Equations (39) and (48). The first term* is 21.(Ir-i /-/'I|_ , .

_h_t Co) --¢e)_ b°
a 2 and aI are evaluated at _-_7)_ _co) (or

#'°' #The error in using rather than is of second order and

would appear only as a fifth order effect in the analysis. The

final result for this term is

where

_ K "z

*In ac'cordance with the short-hand notation of Appendix E,

represents a i(_ , _ ) and a i represents a i(___,_._i.
bo
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z

It is understood in tie above relationships _ is _(o), s is

Co_ (o)
s , and n is n . This is true for the expressions to

be developed for the other terms of R_.

The second term of R_

from Equations (39)for al(_,_)

with the result

is also found by substitution

)
F" / --
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The next fifteen terms are developed by substitution in similar

fashion° The results of these substitutions are

Third Term:

where

/,
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Fourth Term:

=b-(I,]', °-,- =,I:=.̀__,_o

where

+

+ K_ _ (l_e + _s.)J

K _ (ZO -; s)

÷
,4 E_.,,_ z.e _.K _ ( z _ -,-z s) -,-K .,:,.,_

+ Kz_ (ze.3_) 3

(2. 8 ÷ S)

(ze -s)

Fifth Term:

@

where
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-=E_,-_ +_ _ (,-_+ _K_
+ _. s-J_

S

. K _ (z.s- ) +- K _ (s+ ¢)

+ K'.,_ ('z=,-¢,,-,,,_ (,+/%7
Si'xth Term:

+&-,_j,-,,_, +?<+,_<jo,__.%_<,cj<
where

_'-I +

=-LT_)'-"<
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+ ZKZ -.4¢.¢_ 2_ -- ZK _ 5.j7

Seventh Term:

where

7

.4-"
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h
'7

Eighth Term.

F Ic '

where

", - L_(_-)'- _- "-')"-'2_

Ninth Term:

_( _ .,__'-_

where
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Te'nth Tern:

(-fiT_z ' % "" o ,.

_- ]r"

Z,C'h
0

where

k,o =-_ -K . .'K"J._- , -,-



-9?-

Eleventh Term:

-_Z _ _zIL --
_- I _ _"o

+(_,,_<d,,)_- +(_,+_,)_"
where

"7

Twelfth Term:

,._ -¢

' ..i,i

wher'e

g:-C_-J_,z -



-98-

where

Thirteenth Term:
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+ K _ Czs- J-,- K _ Cs-,-,_)-O+zK'L) _ z

Fourteenth Term:

. ,-_,.,_. o. '_ . =.,. {(_,+.,<) +

where

=-C-_)
#,4
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Fifteenth Term:

_,o , -_...*'7.; +

+_%-'7.)_''_"(T..+_..)_+(_..-<4.j_
where

/)(,,K _ _).,_
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Sixteenth Term:

- _'_-'/J_?-°L/ /- '"t;' z_)

where

-,(__)'mz -=-
/6

/6



-103-

+
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The rest of the terms appearing in R_ result from

coordinate transfor_mtlon (see Appendix E) and involve tl, t2

and dtl evaluated at the points _,_ and _'-_i__#.

The following is the first of tbese terms:

Equations (39), (41), and (48) are used to substitute in the

above relationship. As a preliminar_ step in evaluating the

above term, we find

+L_r-o" - 5=., ='t,. . (z .,.i_) _ +

where the definitions are made as follows:
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'<_ <:-,fJ- ,<"..,>,-z <',-_<7-

__ C_',,)C1-_o)s
ZS"/,

.,. r_. (3-1-JKs

- _A"



- 106 -

- o + c,-<,o)_J (_r-,)..o.,,-C_-gJ

-_ _ __-,'+'LT- _',,.o-<<4L=-,_z_L-_/+
, e a' _, .%)_

+,<<.<=<:->,,j_=>,._-,<_ (_-_/_]+

z =-. _'>*O-_oa)(a''') sZ, <., > (,.-g:)'+ C_)'](,<-,)

II
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+
, . ,f,_ /,, l

NOW, the eighteenth term in R_ may be determined

Z

[_z,+_ j_,'_ + c_,-_:,)_''_ + 7-,7 '-_'_ E_,_,,.7.=

: (=,,+',(, )_ + ,,

+i_, -<!,)_.
whe re

-- _'+___L[_
J_ 3z

l-r__ S

=.+ ,+'-"<<,,.,.o__! + z.,,(, - 0,>.+.,+,

<,/
ip

+

3_

(-._.+ . _ i_ + .._ (_-



-1.08-
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_jr._
/d; _" l+_ a

o

(,- _. _)

Note that, m18 = i.

_quations (39) and (-,].)are used to sub_'titu_e i:-:

t]<¢ nir:et .... 'eln_ wee_{.n ,. ith the rc.._ult

where

( r..,)(r-,)%
EK ' * [ '----zE

(,_,) + ,-..)1
,-_ _/ + (_-,2._ (_ -_2

t (_-_)__ (_-_)_
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I

- _< <,>+__s- 3 tSJ-

dl_ - _o48'

,<< /#

E_c(,+<<. +(__L_,,-<<.)2 3
/- t.o.4. _

, O,_-,J_ (_-.j/J

s-,)O+-_i +

÷ 2,K_._.S,)

__.__ . _<
_/_

n._...5._
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/

Cs.¢_- (_-,)m-,- _- c__-_*)

_ , _ f _ . ,,_7}

J

By means of similar substitution, the twentieth
term is found

+ (Co _ J

where
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, j; i (s- 3/)- _z

I _Z.'.t " _"-_-_.'s

#.
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I oZ "f

÷ZK -

-I- K c_L (S-_) j(,-%)_ ]

K __L__/_ - (_+,)(_-,)<,c (,,_o)'+(,--_,)<J

4-
..,--_z. ('-%)_ -
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The final term in R_

'- (1-%)_ (,,-%)"
to be evaluated is the

following

.z_(J-q)__ It,-t,__, _ '6o _.]

As a prelimlnary step, the expression [_- _zbo" ]

to be the following by means of E_uation (50)

is evaluated

where the following definitions are applied

Z e T V _. 3-_" ' (3 4-

i - _.o /- t._ ' )7_(,+%j-,: +
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4-

+

F,_X.___.._.+ _-r -_>,_. ,:,_?
,.J
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Z =_

-I-

8s(,- _ _)

I-DI.,I I

÷



-.L.L/"

Now, it is found that

_o

where
Z=- z__..(,__ ))_'_ - _'-I

It is convenie_t to define

_- _ _. _.
r _,=l _

I.--J
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such that

r L

This result may be substituted in Eiuation (51) while

Equation (39) is used to substitute for _i and its derivative

in Equation (51) 'so that the final result i_

where the following2 i definitions are u,.-;ed
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: ,_, ('o) (o))

It is seen that the inhomogeneous terms contain the first and

third harmonics. Since the first harmonic is contained solely

in the ©i term, the o term must contain only a third
3

harmonic term. Therefore, the coefficients of the first harmonic

terms in the inhomogeneous part must sum to zero and a complex

relationship for n(2), _(2), and s (2) is obtained. The

solution is assumed to be of the form

where B r and B i are to be determined. If the definitiorJs

are made tLat

•,_ ¢o)_ t'o)_/(o• ,,,,,oI::K ( ')+

it. i_ found b5 uub...tiLubio., in Eiuatio. _'. (52) that

-,i_ i_.pSeparation of t_,e coefficients of" _L _/_ ,_ , _ ,

and and further separation of the real and imaginar5 parts
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of these coefflclents lead to the following relationships

(53a)

(53b)

_, >t_+ cJ_ £_- cJ_ _ _

_l _ +_a +_

(53c)

(53d)

Equations (53a) and (53b) are solved to obtain

It is convenie_,t to deYine

(!__)

auch that

(5_:_)

It follows frcm E_uationz (!!)"nd (12) that

-'-' [ )J
The t,hl.rd order contr_.bu;.,ior_ to the wa,_cf'orm is the addition

of" one third harmonic with a phaJe.
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convenient to transform from # back to _ .

Before solving Equations (53c) and (53d), it is

It is seen that

Substitution of the series (z;2) and separation according to

powers in C shows that

(O) (o) (o)

_. "o

The above relations are combir:ed with Equations (53) to yield

(z) , (z.)

where the following definitions have been made

Elimi_ation of

I

C,_l =_ C.,.)_, + c,j 3 j_ ¢o)

(:)
s (_) from E_uations (56) has the result

(5?)
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Now, if n' and _' give the displacenlent from the
o

neutral line in a _ vs. n parameter plot necessar_ 7 to
o

produce a periodic solution with an amplitude of _ for the first

harmonic, it follows that

= +O(E

UI} ( 2 )
If '_o and n are not too large, this means a small dis-

placeme1_t produceL_ a finite amplitude oeeillation. These

relations may be substituted into E iuat]on (5T) to obtain ti_e

relatio1_ship between diLpla_ement from "cit.c_.eutral ll_e arid

amplitude of oscillation. The result is

,,,o, _ S:lc'

' '

Tre error In the abo,'e relatloneLip it:,of order

Idered negllglble. The coefficient:-' of' _:' and

I

V,--9.rL."

..,:_, po<ition _long the neutral lib,e; i .e., thes; depend upon

_:(°), _ (0), e_c., so t}i-.._cti_e.disp]acemenc I_u_..beet, r;ormL_l
o

ized b_ the s,_u- re root of the sum of t):e s-:luar'es of' t]_e

coefficients. If the left-band side of Equation (58) is Le!d

constant for all points a!o_g t}:e neu-_ral line, it is implied

that the maznitude of tile :iisplacement i_; .constant in a direction

norm_':l to the curve. The direction, howe\,er, ma$ be inward or

outward. Therefore, dependic.s upon the value of the factor
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D_ = ....

a certain amplitude

(59)

is obtained for the given displacement.

If the dieplaccment is held constant in magnitude along t},e

_leutral line, the amplitude will var!_ inverL.'e!y with zhe square

root of the above quantit5 D. Ti.e direction (inward or outward)

of the displacement depends upon the o..,._lon of this quantit'a D

and, of course, the signs of the coeffi._ients of n' and _'

Another approac}J in<olves keepin3 the >mplitude

constant end determining ti_e mag_,itude of the normel displace -

m.et_.t :.ecessarT to obtain a periodic solution of titis amplitude.

r-_ .. o'..:ilL'; displa.cemv-_,...... varies directly proportionally to D aloi_

"}:,e r-Jeutral line.

If a displacemel;t is norF,',:_lto t_.e _co)
co)

V:::.

cur.,,e, it follows from ina'pection of E_uation (57) t!_:_t tic

.....'...." _eLer,,_ in tl_e n-:li_'ection and it, thec ....k.....cnts of the di_pia-' ", _

-directlot_ are related as follows

Thi's ma:, be combined with Equation (57) to obtain the _:::lue of

r, for a normal displacement. The result is
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This result may be combined with Equations (56) and solved for

_._ _o)the value of s (2) for a normal displacement to the vs

curve in _he _ vs. n plane. The result is as

follo_s :

Note that the factors appearing in Equatio_ (:58) depend

upon n (°) and _o (°) If the zero order parameters contain

error's of order Uo2, so will the perturbation coefficients _(2)
o

and n (2). If a and a are exact,, so are _ nd _t

Equ:l_jon (5° ) sl-,o_Js_Lac for small _ (i.e., C 3

neo'li,s:ibie= compared _o _g ), _ne, curve representing displace-

ment as a function of _:mplitude is a parabola which passes

through the origin. In other words, the displacement _oes

to zero as the _mplitude ;-;_uared oes to zero. The shape of

tl:e par",bola varies from polr;_ to point along t_e neutr":l lise

as the factor D varies.

A three-dimensional plot of _o vs. n vs. _ may

be constructed _'o_ a o_ _
....... a_l ravage of _ -_ O. A surface would

be obtained whose Intersect_n wit]_ the _0 plane _ives

the _.., (o) pL,o)
v_. cur_es as found ori_<inally by Crocco The@
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intersection of this surface with a plane perpendicular to

the _O plane would give a parabola. This surface represents

the locus of points where periodic solutions are found. The

stability of these periodic solutions still must be determined.

The coefficients x 3 and t_ need not be determinedJ

since a third order correction in the coordinates is on]y

con _°_l_tent'_ when _:_ flow properties are determined to fourth

order _ __ac_ura_0 .

STABILITY OF THE FEHIODIC SOLUTIONS

. The periodic solutio_ is a condltior, of dynnmic

equilibrium and, _s.such, r:my be stable or' unstable. If the

amplitude is perturbed sli,zhtls from the v:_lue fcr a periodic

solution, the perturbation may grow or decay. If botl-, po!-itive

an_ :_e.sative perturbations grow in absolute magnitude, ti_e

periolic ,_oSu;-__ is....... r uns.t:_b!e while if' both positive and

ne:zative pcrturb___.tions decas', the periodic solutio._ is stable.

Fro_it _ _ "E4ua_ion (3_), we see that if' r were nonzero,

the values of n, _, and s would be different from those

found for a periodic _,olution. In partlcular, if r were

of order _ , tl_e modifications in n, _ , and _._ would

be of :e-on_ order. Since, t_e perturbations in n, , and

are of order _ , tKe stability analjsis may be performed

for _o]utio_s oril_,J in _ ra,-'"e of order r:ear the _neutral

llre. Therefore, we say

.Cz (z)_= r'
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It has been found that the solution to Equation (33)

which results from separation of the first order terms in

Equation (14) i_ of the form

(61)

since r ¢2 (_)= r , the growth (or decay) of the first harmonic

term is a third order effect. The effect of r on C R 2 and

R_ is of fourth and fifth order, re_:pectively, such that

the aperiodicitb of the seconq and third harmonics are nezli-

gible for our purposes.

It ls c<._ve_Jie_.t to redcflr:e _he transform:_tiur, (35)

in the followinL_ manner

AI::o, let

_,) -- S-(]r

Note thnt from E]uatio_s (,2) arid (6>), it is seen th-_t

= C _ (') _('_A ('))

,} = to._ Cr.¢ (a) C_)+ C s -_r > + 0 (E?)

_z) sco) 6_ z} cz)- + (s' ÷ ) o (c')
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Consideration of Equation (61) and of the above statementc

If these terms are substituted on ti',,eleft-_Jand side of E,:uatJon

(i:) the _hird order equatior _,after separation becomes

* (s ''_ "9( - _b ] ÷ - -0 )(_

(62)
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where _,, _a,_J,_,,ps,p;,_, and _i are defined in the

previous section. Note that _"_ and _c_ are replaced by

since the error would not appear until fifth order.

Furthermore, the series (42) has been used for n and the

result for R_ has been taken from ti_e previous section. The

first and second equations remain unchan,sed (after the above-

mentioned substitution) from those equations found in the

previous sections. In o_hel, words, up to and including third

orJer terms, r l:as only a third order effect on the first

har,monic.

As alread_ mentioned, the first harmonic is contained

solely in tLe U' term and, therefore
i not in the 0 3 term.

Wi'cI_ this urderstandin_, _eparation of the coefficients of e

a'i!6 e-_,_ ir_ E_uation (<3_') leads to the followin 5

_ ,,,,,C4,,iJ.6
0 --=

Separation of the real and imaginar%, parts of each

cf the above e_u:itlons leads to the identical results:

Taki: :j no_,e of the definitions following E-_uation (56), these

above relations may be rewritten "i.n the form

I _-)._. , I_) , (:L) ' tZ)

(63)
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(2)
s may be eliminated from the above system of

equations and the following substitutions may be employed

(2) j
= _--_-_' + O(C)

,_o ('a-) a ,

= r + O(E)

with the final result"

[_, f-;- '-.-'_'_'.] _' -,-['--';_' -_' ,..,,,"] _' ,-[_')_(_,')'1,.-_,,,c'E4r,'-_'4]
(r,.)

If r were set equal to zero note the ide_tity with Equations

(57) and (58). Suppose @_ were defined as that value of _,-

which satisfies Equation (58) for a given _' and

the value of _ which givec a periodic solution).

is seer_ that

n' (i.e.,

Then, it

Substitution into Equation (64)has the result

_Jote that the coefficient of r is always positive and,

therefore, r has the same sign as (@-6 _''_ )[Ir_;-_Oa'_ ]

If E_r _'-oJa'_20 , a positive perturbation

(£__W):70 grows since r > 0 while a negative perturbation

where (6-_)<O becomes more negative since r< O. This

means the periodic solution is unstable whenever [_a-_O 2 _O.

If this factor were less than zero, (C-_)70 means r,_ 0

and (_--_ )< 0 means r • 0. So, the periodic solution
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/ ¢

is stable whenever [_ _ G3_ i_]<O. Note that r = 0{¢')

It is most u_eful to investi,"_ate the effect of the

sign of this factor upo_l the signs of n' and _" .
0

It is

necessary to first de'ce_nine the signs of the coefficients of

n' and _ in E._uation (65); or, in other words, the signs

of tl_e factors [a_, _'-_)i _'] and _aJ_'_q _' _'_ must be

determir:ed. This is readily accomplished if higl:er order terms

i!: uo are neglected. Noting that K = i + J(Uo) and

= _ _+0( in _he definitionz followini_ E-uatJc, r_s (52)

a,,_d (5C), we find that

_'"_" /'°' °' [, (, _"u'3 y_
¥ m,,'°)u,, o ,o)

% -:-_,_'o)_o _ _'°'÷ O_Z_o_)

_, =--__).,.'°_ ,.)

' - _W'_ '°)- P'°) _ ' 1% [,-(,- +o

, /_o'°)) ,

, ___-(,.,'°)_o_ _'°_, O_o _)

It is seen that _2 and _'2' are eac_ e.4ual to i/2+ . (u)
0

wt_ile .:,e remaining terms arc all of order u . Theref'ore.
0
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neclecting contributions of order Uod , we fine that

# •

The first term (which is the coefficient of n' ) is always

negative while the cecond term (which is t!_e ,=oefficient of

) __'°_(_÷,_ a,,_positivefornegative for

(_),,.,,_)rr • ¢'°L:z(_,,)rr.

Note tha'_ if =_ _<@_,)TF , ,:'< 0 and (or) _<0
o

mea._s a displaceme_;t outward (i_Jto t!_<:re._ion of llr,ear

_:tability) while

pla'cmont (into t!:e region of li:ear i:_stabili<;). If

dfsplacement while n'_ 0 and (or) _' < 0 means an inward

displacement.

Whenever r_l_-_ ,_[ _O , _i' arid are

shown b& E_uation (65) to be suclJ that <._.edicplacemeng from

_:-_e r.eutral line is outward into the r_:_;_c_;of linear stabilitG

(see Figure lOa). Whenever i_ _-_W" Z t]<O, n' and

are such that the ditplacement i< i_w<2rd into hc rejio_- of'

li:.ear instabilitj (see Fizure 10b). Of course, whenever

' ,
r_&-a)_ i_ "_(_ , the displacement is t<]nL,'ent to the neucr_<l

]

llne. };ote that althoush th_s analysis involving the directions

of the dlspl_-_cements assumes that Uo2 is ne:}_ligible, the

conclusions are i_ agreement with numerical calculations (i_)

which terms of order Uo3 are impliciZly neglected due to
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approximations in the solutio:,s for s "0"(] and _z_(o)).

U • ' ]It may be co_cluded that whenever r_ -_L _

is positive, unstable periodic solutions of amplitude C are

found at a distance O(_Z) from the neutral line in tl]e

region where a small perturbation decays (linear stability).

__,is is shown scl:ematica_l_, in Figure lOc which is a cros _'-

sectional plot of the three-dimensional _ vs. n vs. _ plot.

is plotted as the ordinate while a line normal to the

_(O) vs. n (°) neutral line and 19in:_ in the 6..=,0 plane

is plotted as the abclssa. The neutral li_e is suppo'_ed to

-_ o,- ridin such t_at _- vs. normal flisbe pa:_:s[ng ,hrou_l_ the o

placemci:_ from the neutral line is plo,-,ted. An outward di_-

placeIaent is taken to the right and a_, inward displacement is

m_xe:: to ti_e lef_ "_:-• ;,,e curve is pa_abolic, of co_arse, and

gi,,es the locus of points where periodic so]utior_: are found.

An[v solution to the left of (and above) this curve sr'o_qs in

amplitude with time while any solution to t_.e ri3ht of (and

belov:) decays in amplitude with time.

This indicates the possibility of "triggerin;i_"

action since disturbances of certain amplitudes or greater

;ir'o_,;while oti_ers decal.,. Ald:oucn a small disturbance may

not grow into a finite size oscillation, a f._.,,it:edi<:tur,b:Lr:cc.

may result in unstable en_i:_e operation.

While it has beer_ i_dicated that dlsturbances above

a certain amplitude grow, there has been r:o indication from

this anal_sls as to the final resime condition reached. That
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is, no stable periodic solution of higher amplitude has been

found. This is most likely explained (but not proven here) by

the fact that the stable periodic solution contains shock waves

which were excluded in this analysis. In other words, a regime

condition similar to that found for the case studied in Chapter

II may be expected.

Whenever [ _-cA_; is negative, it may be concluded

that the stable periodic solutions of amplitude _ are found at

a distance O(C _) from the neutral line in a region the region

where a small perturbation grows (linear instability). Figure

lOd shows the parabola which is the locus of points where a

periodic solution exists. Any solution to the left of (and below)

this curve grows in amplitude until the amplitude of theperiodic

solution is reached while any solution to the right of (and above)

this curve decays. If the displacement is inward, the amplitude

decays until the amplitude of the periodic solution is obtained

while if the displacement is outward the amplitude of any dis-

turbance decays to zero. In this case, a periodic solution

without shock waves has been found.

Note that the conclusions shown in Figures lOc and lOd

are in accordance with those found by Crocco who, in effec_ said

that for _-0 , these small disturbances grow for inward displace-

ments (to the left) and decay for outward displacements (to the rlgh_.

One may wonder about the significance of thissta-

bility analysis being performed in a relatively simple manner.

It is well-known that the stability analysis of a periodic so-

lution satisfying an ordinary differential equation is usually
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a difficult task to perform (Ref. 18). The stability of the

periodic solutions found for the ordinar3 , differential equa-

tion of Appendix A is probably not obtainable, for instance.

Here, however, periodic solutions which satisfy partial dif-

ferential equations have been found and their stability has

been analyzed without much difficulty. The reason for the

simplicity of this analysis is that the stability criterion

is related to the boundary conditions and not to the partial

differential equations. Under the assumptions, all energy

_ddition or removal occurs at the bounaaries (combustion zone

an_ nozzle) and none occurs in the flow field (chamber). T_e

st_-biii_y _nalysis is really performed on periodic _olutior..s

which oatisfy bou:,dar'j conci'cions $tate J _s algebraic re-

la'cions ana the stabiliUy analysis is no_ performed on <he

solu<ion <o the partial differential equations. This is

clearly seen by the fact that the _olutions to the differential

equatior,,s are the Riemann invariants which do not grow or de-

ca3 in magnitude but, of' course, remain invariant. So, the

stabilit_ anals, sis has been performed for periodic solutlons

which essentiall)" satisfy algebraic equations. This type of

analj'sis, therefore, might be expected to be somewhat simpler

than _hat performed for the solution to an ordinary differential

equation such as that pr.e:_ented in Appendix A.

As a side point of interest, it is noted that an

order of magnitude argument used with Equations (63) shows

that s (2) and r (2) are each of order Uo. This ar.Lument as-
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A hi: omia! expansion of t? e rign'_-}:and *,_i,.]e:,nd _eparation ac-

cordi_.:d to powers il_

P, - r-I '

yield_ t_:e followi_._"

(__, j"z _,_

(_6)

Now, p, x, and t have been determi_ed as functions

of the coordinates _ and _ . A seneral relationship be-

tween _ and _ represent_.n_ a curve which when transformed

back to x, t coordinates is a straight li_.e at constant x
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would be deslrable. This is eas_Ij Found only for x = 0

(combustion zone) where _=_ and for x = 1 (nozzle entrance)

where _--- I #- _ . At each of these locations _i = _&_ = (D

so that the transformation is simplified. Thc pressure yr. time

wave forms will be plotted at each of t:_:e_e two locations.

In order to plot tLe wave form at x - O, we must cal-

culate p_ (_,_) and _[ (_, _) . Ccmbiriatlon of E4ua-

fr
tions (39), (_,_{), (55), and (.J,.:_) 5,ields the results for #_

P(
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IS is seen that tliere are cor_'ectlons of the order _

<i.e average pressure and ol £j part of this correction it:

%o

((-;_r)

proportional to the factor

Equal.ions (i0),

for ti(_,_) as follows

t o = s(:,_--_=,=)

i.E.

(35), (41) and (50) :_ields t_.e res, ult:_:

__L-- z

0
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first order approximation to the wave form at the combustion

zone. Since the zero order pressure term is constant with t_me,

it is not necessary to include the first order correction _
I

time. The difference between evaluating _ at _o andfor

at (_ , _ ) is of order _' ar..._ _ .... _ ......... l_,_l¢-
0 !

for the purpose of a first order approximation. A second

order approximation to the wave form at the combu_stion zone i:

while a third order approximation is given by a plot of

The prescure .rave form a_ the nozzle entrance is

calculated in a similar fashion. Er:uations (39), (4.8), (55),

""" _ ?'_) with thea_d (oo) are used to evaluate _ ( ,$a

following results:

(69) '
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A first order approximation to the pressure wave

format the nozzleentranceis g_venby a plotof (l_p, (,_,_)

_. _o(_._,_} . A _eco_dorder_pproxlmatloni_gi_e_by

_oto_ 6_p, _,,, _p_+_%_ _ _) _.
(t,. c5.._,_; ÷ ct.c,._,p_ _ ) while a third order approxima-

tion is given by a plot of (l÷apl (S+ _,_) + ¢_a($+_,#)

NUMERICAL EXAMPLE:

In any calculation based on these results it is nece_

sa_y to specify the rate function _C_). This is done b}_ stating

the values of the coefficients in a Taylor series expansion about

the steady-state value. For an approximation with error of fourth

order in the speed of sound perturbation, only the first three

coefficients _ _ _), M , and L, need be stated (See Ap-

pendix E). These coefficients are readily calculated for any

ra_e function which is analytic.

For the purpose of numerical example, the function is

chosen to be

where

that

is some constant.

42=

The isentropic relationship says
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Therefore, it is found that

==- k _'-J

it is immediabel_, seen that _ and /_ areSince ;_ _- Z_ N , '- '

identical. _t is the interac'_ion index as defined by Crocco (Ref. ]).

According to experimental results (Ref. 2), the range

¢o}
oF practic?,l interest is _< _ . T_e minimum value of _t pos-

sible for unstable operation wa,<: found by Crocco zo he _----_. If
(o)

_=_._ , this minimum value is )% :.46.

In the calculatior_s, _=_.2 wa_ taxen for all .,;a_es.

Three ca:_es were examined for t'he mea:_ flow j1_,_l,number,: _--,J.,

.__, and .3. Furthermore, three modes of oscillation were ex;:mined.

t;:_,e _unJamental mode ( ,,_=i ), tie second harmonic mode (_= _ ),

and t}_e third harmonic mode ( .,_--_J ). The i:_tejer m wa_ taken

equal to zero in all calculation'c.

So" _co) _coJ, , and o were calcula:ed for various

_co) in the range 0.5 __ iO.0 by means of Equations (37)

and (38). The results are doub]e-\alued since there is a choice

of' a plus or minus sign in these equations. Figures Ii, 12, and

13 s_ow the results for the case _=_ (fundamental mode) and

Z._..= .2. If the integer m were taken as nonzero in these
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calculations, there would be no change in the S vs. _L curve

(Fi .ll) the¢'°J• vs. curve (Fig. 12) would be translated

vertically with no distortion and the _o}, vs. _toJ curve (Fig. 13)

would be translated vertically and distorted somewhat. The

minimum value of _ would remain unchanged and the shapes of

the curves would still be "parabolic-like•"

At a value of_ greater than the minimum value neutral

oscillation is possible at two frequencies: one frequency greater

than the natural resonant frequency ( _ _._ ) and the other

frequenc_ _ less than the nat_ral resonant frequent _ (5_ _ ).

S 77- .

_¢e} and

12 as either

between them.

l_he parameters 4_ o_,t_ _r

The irequen% of oscillation is dependent upon the characteristic

time of the combustion process _ (o_- ). If the time of

combustion increases so does the period of the oscillation and,

_o)7 co)
t1$erefore, the frequency decreases. If _ _ C_ ;pTT) , we

o. Co) co)
find So°J< _77" while if -{o < ] C_ < 27") , we have

c_j
The two different branches of the curves of S vs.

Coo) marked in 11 and• )IL co)VS are Figures

,_, (o)

which appear in the sec-

ond order contribution to the wave form may be calculated as

indicated by Equations (:7a) and (47b). l,_otc that there is no

A )
change in the final re<sult_: if the _'".........of is

provided that _+-_- is a_e_ to i_O_._°); . These ti_rce par-

_o) (e)
ameters depend upon _. ; S (Tt °)) and _ (o}(- ,,,_) ..
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Figures 14, 15, and 16 show the case I_.= .2 and

_--i (fundamental mode). Figure 14 shows that A tends to plus

i_ifiz_ity as _ tends towards For 41, A("_.')) r_

po itlvew1 ilefor  o"ZI, becomes egatlvefor

higher values of _c.) . JC_{.j) is of order u_lity for a wide

range, 0,_ _ k_ </O.O and above. Therefore, since the co-

efficient of the second harmonic term in the wave form is pro-

portional to C z_ , this coefficient is of order C _

(Note that this applies to the wave form in characteristic co-

ordinates and there are additional second harmonic contributions

resulting from the transformation to space and time coordinates).

The phase term (_ is plotted verses _ in Figure 15

and is seen to change rapidl_ as co) _'+i
47 " The wild

behavior of _=_ for o occurs where _ _) (see

Figure 14) so that it does not result in an_ wild behavior in

the wave form calculations. For larger values of ;_'°), _ in-

,_l_,c°) Co)
creases for _ _I and decreases for _ _0 •

The factor _r which is the coefficient of the

co)
correction to the mean flow condition becomes infinite as TL

_ co)
shrinks to its minimum value. _p is negative for _o _ _nd

positive for _.. Its absolute value decreases as be-

comes larger in both cases.

The _ and terms are calculated by means

of E]uations (54). These are parameters in the third order

contribution to the wave form; in particular, _ is the coef-

ficient of the third harmonic term in the wave form and 3A is
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-he _i_jn of

.

and _r

and

,.O Je } .

1_ote that there is no change in the wave fcrr if

is adds ,_ to
is changed provi:ied tha_ _ 3 ....

These _wo parameters depend upon )_jo)j S_o_ _ci',, _(_,

Figures 17 and !8 show the curves of _ v_. 7%_°;

vs. _co_ for the case _.-.2 and _ (fur_damental

I_ is seen from Figure 17 that _ becomes infinite as

Co)
_1'.1 TI_Is parameter is negative for _ _I and

is usually somewhat larger

co)
"

positive for ._.,co)-_. 1',TOte that
O

than A such that _ and _ could become comparsble if

were not too small. _,_.s would mean tha< the second and

third harmonic components in the wave form would be comparable

in amplitude (in characteristic coordinates).

The _ term becomes large as co___ 4__ . For

.'_o_'°)_. ]. , A ,_+,_es menotoni+_lly _s increases
nc°_

I%'°) ?" <'_ iand eventually becomes negative for larger while for o
co)

A increases mono_ioniuallj with 7% a_d becomes posi_[',_e _or

larzer _ .

?ine factor D is _alculated by means of Equation

(5'.9) and is seen to depend upon "ac+', 9_ '') , .5 co,), ,,4 , 0 ,

and Cr . D is the factor in the relationships between

di.placement from t_+e neutral line in a _ vs. _ plot and

the amplitude parameter _ . A positive _ indicates an out-

war,] displacement and a negative D indicates an inward dis-

placement.

The result for Lhe a-.K and _--_ case is shown
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_o) (o)

in Figure 19. For both _'0 _ and _o _ I , 0 becomes

infinite as 7l c°) _| _o)
4_ and decreases as increases

from this minimum value and eventually becomes negative. (For

_o_6)_i , it becomes positive again at still larger _Z _°) ).

The change in sign occurs at approximately _o) 2.25 for _co_
O

and _o)= 2.75 for _o) I .

The results for all other combinations of _ and _ are

qualitatively similar; i.e., they may be described in the same

manner that the _= l, _.= .2 case has been described here.

Note that positive D implies unstable periodic

solutions while negative _ implies stable periodic solutions.

In the range of values of _ of practical interest (I_.< 2.0 a_-

cording to Ref. 2), only unstable solutions were found for all

cases studied.

The determination of the wave form would only be of

interest for stable solutions (_ _ 0). Wave form calculations

are presented herein for the case: _=1.2, _A_ 0.2, _= 0.i,

i, and _c°1_4.0. At this value of co_= , the periodic so-

lution is tableforbothpoints and A flxed

value of C was chosen such that displacement is not the same

for all points. Figures 20 and 21 show the wave forms at the

nozzle while Figures 22 and 23 apply at the injector. Each

figure shows three approximations to the wave form as explained

in the previous section: first order, second order, and third

order approximations. The wave form over the time period of
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oscillation is indicated.

Comparison of Figure 20 with Figure 21 (or Figure 22

with 23) shows significant difference between the wave form for

% _ (below-resonant frequency) and _(_ (above-resonant

frequency). For above-resonant oscillations• the mean-pressure

correction is positive and the positive peak becomes sharper.

On the other hand, for below-resonant oscillations, the mean-

pressure correction is negative and the negative peak becomes

sharper.

A very important factor in the wave form is the co-

ordinate correction which is related to the nonlinearity of

the characteristic curves. It is seen that the correction _

is governed by a nolhomogeneous wave equation with a periodic

forcing function. The harmonic oscillator anology informs us

that a phase shift of 180 ° occurs whenever the forcing function

is changed from an above-resonant frequency to a below-resonant

frequency. The result in our wave phenomenon is not this sim-

ple, but there is a shift in phase of G_, explaining the dif-

ference in the location of the sharper peak for above and be-

low resonant frequencies.

Comparison of Figure 20 with Figure 22 (or Figure 21

with 23) shows the wave form is essentially the same at both

chamber ends implying that the wave form is similar throughout

the chamber. The amplitudes are greater at the nozzle end than

at the injector end since at the nozzle there is no phase or

delay in the reflection but there is a phase in reflection at



-150-

the injector end. This phase in reflection is related to the

time-lag effect. Note that if a finite length nozzle were con-

sidered there would be a phase in reflection at the nozzle entrance

related to the wave travel time within the convergent portion of

the nozzle.

Figure 20, 21, 22, and 23 show a ver_ slight difference

between the second and third order approximations implying con-

verge1_ce for small values of C . For larger values of • , the

difference between the three approximations is significant. Also

for larger values of _ , a double-valued solution occurs at

the sharper peak indicating shock formation. This is strikingly

different from the case of shock formation for a simple wave

which ori_Inally had a sinu_oidal wave form. In that case,

shock formation is well-known to begin at the inflection point

of the compressive portion rather than at the peaks. This seems

to be a result of off-resonar_t oscillation.

The qualitative results for the higher mode of oscil-

lation (_--_) are identical. The only important difference in-

volves, of course, the period of oscillation.
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CHAPTERIV

DISCUSSION OF RESULTS

ANALYTICAL RESULTS

An i:nportant result of the analyses of Chapter II

and III is the indication of the importance of the character-

istic time of the combustion process. In Chapter II the com-

bustion time is negligible compared to the wave travel time in

the chamber such that the energy feedback from the combustion

process to the wave phenomenon is instantaneous. :n the other

hand, irJ Chapter III, the combustion time and the wave travel

time are off the same order of ma3nltude such that the e_ergy

feedback is not instantaneous but occure o_er a period of time

of the order of the wave travel time.

Instability of the steady-state operation occurs in,

both cases if the feedback _£ _ne_-'v i._ _l_r_i,_i_-_lv _no,
........ __u, -- .............. J ....... C_3 •

In Chapter III, the further the ratio of period of oscillatlor_

(approximately wave travel time) to combustion time (time-lag)

is from the optimum value (2), the greater must be the feed-

back (or, in other words, n must be greater) in order to

produce Instabillt2. At the optimum value of this time ratio,

energy is fcdbaek in pha_e with the pressure oscillation.

Away from this optimum time ratio t_,e phase between pressure

and energy addition or feedback become_ nonzero such that the

absolute value of the energy addition must become larger. In

Chapter II the energy addition is irJstantaneous so that the phase

is always zero and thereb2 optimum for instability.

Whenever the combustio_ time and the wave travel time
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are of the same order the frequency of the oscillation is

different from the natural frequen% of the chamber by an amount

of order uo. Furthermore, unstable operation is possible over

a certain chamber-length range such that upper and lower length

stability limits exist. Whenever the combustion time is neg-

ligible compared to the wave travel time, the frequency of os-

cillation is the natural resonant frequency of the chamber and

instability is possible at all chamber lengths provided that

the energy feedback is sufficiently strong. Note, however,

that the assumptions of concentrated combustion zone at chamber

and short nozzle become poorer as chamber length decreases. In

fact, as more of the combustion occurs nearer the pressure node

(at the chamber center for the fundamental mode) the operation

becomes more stable. The result is that in practical cases a

lower length limit exists so that the only claim made herein

for instantaneous combustion processes is that no upper length

limit exists.

Stable periodic solutions of finite amplitude without

shock waves could only be found if the phasing between energ_

addition and pressure were sufficiently far from zero. WT_en-

ever the phasing were too clo_e to zero the periodic solutions

without shock waves (Chapter III) were found to be unstable.

It may be argued that the or_12 stable periodic solutions in

this case will contain shock waves. If the amplitude _s in-

creased above the value for the unstable periodic solution,

this amplitude will continue to increase. If a stable periodic
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solution exists, this growth must be stopped. This growth can

only be stopped by the appearance of one or more additional

dissipative mechanisms since the nozzle is not sufficient in

this case to prevent the growth. With growth of amplitude,

there is a distortion of the wave form. With sufficient growth

and distortion, ahocks are formed provldingthe additional dissipative

mechanism.

Note that the above statements col_ccrning the relation-

ship betweer_ phase and _o!utions with or without shock waves

result from an analysis wherein the pha;_ind effect:_ ape)ear due

to the Crocco time-lag effect. It is _ot clear _-_;at t_cse state-

meats can be generalized to i_;clude other type'.; of combustiorl

pbenorr.ena where phasing is pre_e_t. T_;e _tate_,ents are ir_ agree-

ment _vith the results of the a_al}sis of Chapter II it) which the

limiting ca'<e of zero phase is treated. Ir_ t):a% ca_.e all finite-

amplitude oscillations contai_:ed shock_*. It is felt, ther.¢fore,

that this result is valid ever_ for combustion _.odels not based

on the Crocco time-lag postul_,te.

Even if the phasing betweer_ ene_.dj, -{dditlor_ and pres-

sure is far from zero, the amplitude n_ust r,ot be too large if

no shocks are to form. If the amplitude is _;o large that severe

distortion of the sinusoidal wave form occurs{, shock wa_es may

form. So, sol_tions without _:hock_';are found onl_' in a small

* Shocks were assumed to exist i_ that anal) s_is; however,
their amplitudes were left to be determined. If solutions
with no shocks were possible, zero shock amplitude solutions
could have been four, d.
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region in the _ , n plane. Tl_Is region is adjacent to the

vs. curve but far from the minimum value of _ (point

of zero phase between energy addition and pressure). The width

of thi_ region is of order @t where _ is t}._eupper bound on

the value of the amplitudc parameter such that shocks do not

form.

A ve_ importan_ r,esult is the relationship between

tlJe forci_,g function of the invitability and the wave form in

the chamber. This is readily seen from the results of Chapter

II where the nature of the forcin$ func_io_ is descrfbed (to

suffi _" __lel_ accuracy for our purpose_) b_ t}le values of t!_e

parameters _ and _. Here, we see that the amplitude is direct-

ly propor_ionai to (_-l) while the coefficiel_ts of x and t ap-

pearing in the e_.:pone_tials are each direccly proportional to

y . Therefore, a knowledge of the forcing function (i.e.,

knowledge of _ and _ ) leads _o a prediction of the amplitude

of the oscillation and t_e shape of _he wave form.

The interesting possibility here is that the ampli-

tude and wave _,_,ape ma_ be deter_nined expe_'imentally and the

theor_ may be used to calculate an _ and a _. In this way,

something can be learned abou_ the nature of the forcing func-

tion. This point will be exemplified later, whe_J _he Princeton

zas rocket experiments are discussed.

This same type of relationship has been found in

Chapter !II where the wave form of the stable periodic solu-
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tions is found to depend upon the combustion parameters* "_ ,

n, M, and L. It is seen that _CjA, _C r , B, and _ '

depend upon these parameters. The last five quantities depend

upon the zero order values, and while the first two

quantities _ and 5 depend not only on _ and .._co) but

also upon the displacement from the neutral line or, in other

words, upon _" and m_ .

This relationship between the combustion parameters

and the wave form in Chapter III is extremely complex so that

one probably can not determine the parameters by experimer_tal

observation of the wave form in this case as was suggested for

the case of Chapter II. Even if the relationship were not so

complex, there are still two other serious difficulties. The

first is that stable periodic solutions are found only outside

_ ........_,_o_ _ n-_,al,,_+___ o_ practical ......._nt_rest°Stable solutions

where wave form calculations are meaningful occur for n_ 2.0

while according to Ref. 2, n _ 2. ) for practical cases. Other

injector-propellant combinations not _et tested may provide

higher values of n, but this is not probable. The second

serious difficulty is that n, H, and L appear in the re-

lationships in a specific manner. In particular, the descrip-

tion of the combustion process is obtained b2 means of the

Crocco time-lag postulate. As already mentioned, this pos-

tulate has been verified experimentally for the linearized

i

* Othe_ parameters such as _ , Uo' and the mode of oscilla-
tion affect the wave form, aloo.
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treatment (Ref. i and 2). The extension of this postulate to

the nonlinear case, however, has not been verified. No efforts

have been made in this direction so that we are not certain

that n, _ , M, and L appear in the nonlinear terms in a

physically accurate manner.

The possibility of "triggering action" has been in-

dicated by the instability of the periodic solutions in certain

ranges of the _ vs. n plane. Whenever the periodic solution

is unstable, an oscillation greater in amplitude than that of

the periodic solution (by any amount, no matter how small) grows

in amplitude until another dissipative mechanism presents itself.

The implication is that if a disturbance is induced with an

amplitude greater than that of the periodic solution, this dis-

turbance grows to some regime state such that unstable operation

of the engine results. If the amplitude of thc induced disturb-

ance is below this critical value, the amplitude decays to zero

and steady-state operation of the engine is restored. This

critical value of the amplitude varies as the square root of the

displacement from the neutral line in a _ , n plane. (This

is an asymptotic relationship and may only be applied in a small

region near the neutral line.)

The results for all cases where numer±cal cal_ulations

were performed indicate that "triggering" action is pos:ible ir

the approximate range n _2.0 which is the range of ph_s1_l

interest. It is noted with caution, however, that these results

are based upon the nonlinear extension of the tlme-lag theo_/
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and this extension has not been verified experimentally. The

author feels, however, that the results Justify the claim that

"triggering" action is a very likely possibility in the longi-

tudinal mode whenever a phase exists between energy addition

oscillation and pressure oscillation. In the zero-phase case

studied in Chapter If, no "triggering" action was possible.

Finite amplitude waves occurred only for values of _ which were

in a range that produced instability of the steady-state oper-

ation to small perturbations (._ee, also, Appendix C). In

Chapter III, the possibility of "trlgzering" action at the point

(_o_ _ D is posi-of zero phase ) is seemily indicated since

tire there. This would contradict the results of Chapter II ex-

cept that accurate interpretation of the results of Chapter III

leads to agreement rather than con<radiction.

Consider a constant normal di[:.placement at each point

along the neutral line. This means _D is constant and

finite. Since _ becomes positive infinite as the zero-phase

point (_o_= _ )is approached, _ must vanish. This would seem

to mean that at this point any disturbance above the minimum

amplitude K_o would grow in amplitude and, therefore, "trigger-

ing" action is extremel_ easy. In fact, it is easier at this

zero-phase point than anywhere else where _ _O. On the con-

trary, _= O does not mean zero amplitude for the complete

wave form but only zero amplitude for the lowest harmonic in

that wave form. In order to have zero amplitude of the wave

form, the amplitudes of all of rke harmonics in that wave form
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$
must be zero. If any of the amplitudes _A,C 8, etc. are

different from zero, the amplitude of the wave form is different

from zero.

Note that, for a constant normal displacement, _ is

inversely proportional to the square root of D and the ampli-

tude of the higher harmonics are directly proportional to A/D,

D3/2B/ , etc. In addition, note that both numerator and denomi-

nator become infinite at the zero-phase point as shown by Figure

i;+, 17, and 19. Tl_e numerical results indicate that these amp-

litude factors do not go to zero as tLe zero-phase point is ap-

proached but instead increase in magnitude. In fact, B/D 3/[_

ten_c towards infinit_ _s shown by Figure 24.* Hopefull_, an

coJ ]_t.L
::'symptotic analysis (in which the limit as _ goes to 4Z

is considered) would show d'_at the amplitude of one or more of

the higher harmonics becomes infinite at this point. This would

impl$ _hat the amplitude of the disturbance necessary to grow

i_] amplitude rather than decay would be i_finite. "Triggeri_",

therefore, would be impossible at this zero-phase point and

agreement with the result of the analysis of Chapter II is self-

evident.

* In Figure 2_, the absolute value is plotted. The reason
that 10/D_/zl becomes infinite at approximately _°_ = t is

that the displacement is changing from outward to inward as

;_°_ increases such that D is passing through zero. B re-

mains finite, however. Since the displacement from the
neutral line is equal to 0G _ plus terms of order _' , this

means that the third order terms are important in determining

the relationship between displacement and amplitude.
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This asymptotic analysis would present a tedium com-

parable to that of the analysis of Chapter III and, for this

reason, it has not been performed. Instead, it is assumed

that the numerical results for points near the minimum value

of "F_.¢°_(='_ _ _'--1.2) give reliable information concerning

the asymptotic behavior. It is claimed, therefore, that at least

the amplitude of the third harmonic C_B tends towards in-

finity even though the amplitude of the first harmonic C tends

towards zero. Furthermore, on this basis, the minimum amplitude

of the di_-'turbance necessary to "trigger" ur.stable operation of

the engine must tend towards infinit_ and, in the limit, "_rlg-

gering is not possible.

These conclusions concerning the "triggering" action

ap_:ly only to situations where _here exists a "continuit)" be-

tween the linear an_ r.o<_linear mechanisms of the e_..ergj 'ad-

dition to the oscillation. TLe e_sential ph).sics of the re-

sponse of the combustion process to <,arious pressure and velocity

disturbances, whether infinitesimal or fit_ite, must be similar.

An example of a "discontinuity" in t_is mechaniLm would be _he

droplet shattering phenomenon whereby _=elocity di_urb._nces

larger Zinan a certain magnitude would cause inertial forces to

bec'ome greater than surface tenslon forces resulting in the

break-up or shattering of droplets into smaller droplets. The

vaporization rates and burning rates increase causing an in-

crease of the energy fedback to tlJe oscillations. If "she dro_

lets are extremely small after shatterit_g, the feedback of en-
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ergy to the oscillation is essentially instantaneous and there

is zero-phase. Under circumstances such as the one outlined

here, "triggering" action may be possible at the zero-phase

point.

It is noteworthy that if there is a "continuity" be-

tween the linear and nonlinear mechanisms of energj addition to

the oscillations, there is a "continuity" in the results of a

linear and a non-linear analysis. As _ ---_0, the nonlinear

results of Chapter III and the linear results of Ref. i agree.

FurtheI_nore, the same stability limits are predicted by the

nonlinear analysis of Chapter II and the linear analysis of

Appendix C.

The importance of the boundary conditions in the de-

termination of the stability criterion cannot be overemphasized.

Growth of the amplitude of oscillation occurs whenever more

energy is added by the combustion process than is withdrawn by

the nozzle. Decay of the amplitude occurs whenever less energy

is added by the combustion process than is subtracted at the

nozzle. The nozzle is extremely important in determining the

stability criterion. In fact, it is Just as important as the

combustion process and therefore its effects must be given an

accurate description in any accurate analysis of the combustion

instability phenomenon.

Crocco has developed a description of the nozzle ef-

fects under oscillating conditions, but the linearized treat-

ment applies only at very small amplitudes (see Ref. 1). At
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larger amplitudes, the proper nozzle boundary condition is

known only in the limiting case of zero-length convergent por-

tion of nozzle. This limiting case has been assumed here.

(Note that zero length really means negligible length compared

to chamber length.)

Although a limiting case has been considered, the

physics of that situation has accurately been described. Vari-

ous other workers in the field have refused to consider limiting

cases and, finding themselves without any knowledge of the proper

boundar_j conditions, have been forced to make unjustifiable _>nd

(to this author's contention) physically unreasonable assumptions

concerning the chamber flow field. In Reference 19, a sinusoidal

pressure variation with time at a point slightly upstream from

the nozzle throat was assumed while in Reference 20, a shock

wave was assumed to have a constant pressure ratio with time

during its travel down the chamber. In Reference 21, which

contained an analysis of the transverse mode of instability,

the longitudinal gradients were assumed to be zero. The need

for simplification in treating these problems is clearl_ under-

stood; however, it is hoped that any simplifying assumptions

are proven reasonable before the_ are applied. Satisfactory

proof should at least consist of a comparison of the results

of the anal_sis based upon the simplifying assumptions with

the results of an anals, sis based only upon assumptions which

are widely-accepted as reasonable. This comparison could only

be made for special limiting cases (otherwise there is no use
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for the questionable analysis if a clearly-reasonable analysis

could be performed for a general case).

In Chapter II, where an oscillation at the natural

resonant frequency of the chamber was studied, a second order

analysis was necessary' to obtain a first order result• This

is common procedure in the analysis of nonlinear ordinary dif-

ferential equations which have periodic forcing functions at

_he natural frequenc_ (see Ref. 18). This proceQure was also

used in Ref. II and 12 where shock-wave oscillations in a one-

dimensio_al chamber closed at both e_:d_ were treated. In

Chapter III, _i_erc off-resonant oscillations were col,sidereal,

it was not necet_:ar.; to go to a higher order 3nalysis to get

the results of a given otter. This is _ommon procedure in

nofllineur ordinary, diffe_oential e<iuations which have forcll_g

functions at other than the natural frequency. _ote that the

se_'erninj, e_uations for x and t are inhomo_eneou_ wave

equations which are analoguous to ordlnarL, differential e.iuations

with forcing function, s.

The amplitude of the resonan_ solutio_ of Chapter II

was dil,ectly proportional to the displacement from the neutral

stabili_ line (_- i) The amplitude of the off-resonant

solution of Chapter III was directl_' propcrtional to the square

root of the displacement from the neutral stabilit_ lir_e (r.ep-

J

resented b_ _' and _ ).

"Sawtooth" wave forms were obtained in Ref. ii and 12

and "nearly sawtooth" waves were found in Chapter II indicating
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that "sawtooth" waves are probably the natural types resulting

from the wave phenomena. Ref. 17 discusses how sawtooth waves

result asymptotically from other wave forms so that it is not

surprising to obtain these results. Ti_e effect of the combus-

tion process seems to be to provide small corrections on this

sawtooth wave form as shown by Figure 7.

In C_apter llI, stable wave forms without shock waves

were ob_aiL_ed only at _alues of' (- and _ quite far from the
o

zero phase point (far from resonant frequency,) and only for

veto small displacement from the l_eutral line (_ sma,ll). T_e

wave forms were similar throughout t_'.e chamber. _lhere were sig-

nificant ai/'ference,_ in _}-,ewave forms for above-resonant and

below-reso_,_ant cases as explair, ed _n C_:ap_er' III and indicated

• _. _ W °)in Figures _0, 21 2_, and 23. l']_e \alues of for which stable

........ _"- bc too _ ....... _cowave forms are obt:;_i!_;ecJseem, }'o_,,,,er, _ _b_ be in

the range of practical i_)terest.

It is not possible to compare the results of these

analyses with other analy_es concerned with the nonlinear as-

pects of combustion i_-_stabi]ity since other theories involve

the determination of flow conditions baa'ed on certain initial

co:_ditions (see Eel. 19, 20, and 21). Numerical integration is

usually required so that results are not readil_ interpreted.

If those analyses would yield periodic' solutions it would occur

oni0. af<er an infinite time. Here, on the o_her hand, periodic

solutions have been found bj analytic means.

Comparisons can be made with works on related phe-
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nomena, however. The longitudinal oscillations with shocks

studied by Chu (Ref. Ii and 12) are comparable to the oscilla-

tions studied in Cnapter II. The similarity in the wave forms

has already been mentioned. In a sense, Chu's problem is a

limiting case of our analysis if the mean flow goes to zero

and the injector end and nozzle end become solid walls. This

is not expressible explicitly since as the mean flow goes to zero

in our case, the energy addition also goes to zero and there

can be no periodic oscillation. An important difference results

due to the presence of the nozzle which removes energ$ from

the oscillation. In Chu's case where there was no nozzle,

the energy addition at one chamber end is of order _2 (where

is the amplitude of the oscillation). In our case with a noz-

zle, both the energ_ addition due to combustion and the energy

removal by the nozzle are of order 6 , but their difference

(net energ} _ addition) is of order C z .

The results of Chapter III are similar to the results

of Maslen and Moore (Ref. 9 and i0 ) even through their analyses

dealt with transverse oscillations. Both here and in their works,

no shock waves were considered with the second order effect

being the addition of a constant* plus a second harmonic term

to the wave form and the third order effect being the addition

of a third harmonic term to the wave form. No phase appeared

* This means constant in both time and space for our case

but for the case of Maslen and Moore, it means constant

in time through variable with chamber radius.
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in these higher order terms in their case as they did in our

case. Another similarity is that their nonlinear frequency

correction was of second order as is this term in our case.

Certain simplifications involving the application

of the characteristic coordinate perturbation technique have

been _n_ouuc_d _Jez.e±_. The first involves the use of the

Riemann invariants rather than the gas velocity and the speed

of sound even though the boundary conditions are given in

terms of these latter properties. In addition to their in-

variance along the characteristics, these former variables

possess the convenient property of continuity (up to and in-

cluding second order) through shocks. A similar convenience is

obtained by use of the variables [IX--_. + t,] and [_,,_, -t,]

rather than X! and t s . These former quantities are con-

tlnnnl]s th_n_gh _ _ho_l{ _ .... In __'-"_ fa _'_- _- _'^_

mann invariants only the combination rL_ @_,J _ is con-
' I -It, 0

tinuous across forward-moving shock waves while the combination

-vjf] is continuous across reaward-moving shock waves.

Another simplification was introduced in Chapter III

whereby a certain degree of arbitrariness was allowed in the

numbering system for the characteristic coordinates. This al-

lowed the determination of a transformation g(_,_) and _ _l_)

that possessed a continuous functional form for all va&ues of

and/ . This type of transformation simplified the

process of determining periodic solutions. Even if _(_) and
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O._j_) are periodic, it is not certain that _C_,_,) and cI.(_,_}

are periodic. In order to determine this _(,#,_ and _(,_,_) must

over a wide range. It is more convenient for%(%_)andbe known

_(,d,_) to have the same functional form o'.er the whole range of

interest than to have different functional forms in different sec-

tions of the range. If there were no arbltrarine_'s allowed in

the numbering system, the latter _'Ituation would occur.

EXTENSION OF THE L_:ALYTICAL WORK

An interesting extension of the analytical work

would be the determination of periodic solutions wltb shock waves

whenever the energ3, feedback is described by means of the Crocco

time-lag postulate There is a serious difficulty which h_._ pr@

vented this extension.

According to the Crocco time-lag postulate, the per-

"_urbation in mass release of burned gases _'(_) is proportional

to the pressure perturbation _'(.t) and is also proportional

to the negative of the pressure perturbation at come well-de-

fined prior instant _'(t-_) . This may be written as follows:

[p'ct)-o'(t-%

This is a linearized relation so that the error is of order _£ .

has been found to be approximately one-half the

perlod*(or, at any rate, less than the period) for unstable sit-

uations. Now, the period of oscillation is the time between

shock reflections at the combustion zone and, therefore, the

time between discontinuities in m'and _' at the combustion

zone. If a time _ after a shock reflects is considered, it

*This statement could be generalized to include any odd multiple
of one-half the period. The following argument would be

essentially identical.
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is seen that _" (t- _) is discontinuous so that _'(_)

and (or) p'(£) must be discontinuous at this point. This im-

plies there are other discontinuities in addition to those

caused by the prima_ shock wave. All these discontinuous jumps

would be of the same order of magnitude which is in serious dis-

agreement with experimental results.

The employment of the time-lag concept which proved

successful for the linear case results in failure for the non-

linear case with shock waves. Apparently, this co_.cept, as

presently formulated, gives a good _escriptior,_ of the combustion

process in one instance but not so in another. Probably ti;e basic

p!k,;sical concept is applicable in both situations; i.e., tl_e

char<-ct.eristic time of the combustion process is an important

parameter in the instability phenomenon. The formulation of

this concept, however, would probably change as the flow and

combustion process is modified; e.g., with the introduction of

shock waves. It is concluded _hat until a better understanding

of t_,e combustion procc_ is obtai_ed, an i_,Jestigation of the

instabilit_ problem with time-lag effe,:ts and shock wa_'es would

not be fruitful.

It would be useful to relax the long chamber ass_mp-

tion and consider a distributed (longitudi_Jally) combustion

zone and a nozzle length which is comparable with the chamber

length. Each of these relaxations would separately prevent the

solution of the compatibilit_ relations to be simply the Riemann

invarian_s. Other terms involving the integrals of mass source
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and area change terms would appear making the solution much more

difficult. The consideration of the degeneracy at the nozzle

throat (where one family of characteristics is vertical in a

time vs. space plot such that no signal is propagated back into

the chamber from this throat position) would be quite difficult.

In conjunction with the relaxation of the above men-

tioned assumptions, it would be extremely useful to develop an

approximate analytical technique in order to overcome the dif-

ficulty of the analysis instead of employing the technique used

in this work. (The present technique is also approximate, of

course, but the error is well-defined according to powers in

). The merit of this other technique could be determined by

applying it to the limiting cases of concentrated combustion at

one chamber end and short nozzle. Those results could be com-

pared to the results of this work. If the difference is small,

the approximate technique which assumedly would be much simpler

would be a very useful way to obtain results with reasonable

accuracy.

A more accurate analysis of the combustion zone

dynamics of Chapter II and Appendix B would require an accurate

description of the rate function. For example, if chemical

kinetics provided the rate-controlling factor in the energy re-

lease, one should use the rate_ _ e "£/_T_ rather than the

rate _'£/gT_ as used in the numerical example of Chapter II.

The main difficulty here involves the determination of the gas

density behavior under oscillating conditions. If the isentroplc
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relation were used, the rocket would be unstable for values

of I'L __-| regardless of the exponential effect. Stable op-

eration over a certain range would be possible only for very

small values of _. However, energy release (and diffusion

effects if diffusion time is not too long) makes the isentropic

condition invalid within the combustion zone. The proper re-

lationship could only be obtained by solution of the unsteady

heat equation (which has not yet been performed for this sit-

uation).

CONPARIS._N WITH EXPEF, IMEI._TS

The best experiment for comparison with this theory

of Chapter II seems to be the Princeton gas rocket. Details

of that research will be presented in a report (I{ef. 22) to be

published shortly. The gas rocket is of variable length and

small diameter and burns premixed (hydrogen-air) gases with

E/RT* estimated at about lO, near the stability limits. Only

the longitudinal mode of instability occurs and it is observed

in the form of shock waves followed b_ small exponential de-

cay in pressure. Figures 25 shows the pressure wave foI_n ob-

served with the Princeton gas rocket. The pressure jump across

the shock is of the order of those calculated in the simplified

example. At low lengths, the engine is stable, but at longer

lengths, where the concentrated combustion at injector and

short nozzle assumptions are reasonable, instabiiit9 occurs

(at the preferred mixture ratios) with no upper length limit.

The preferred mixture ratios for instability occur awa_ from
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and on both sides of stoichiometric such that the same temper-

ature is measured at both stability limits. The various data

collected in that program seems to be leading to the conclusion

that chemical kinetics provides the drivlngmechanism for the

instability.

If it is assumed that the gas rocket combustion

process behaves in similar fashion to the model investigated

in chapter two _, and, more specifically, that the energy

release rate r follows an Arlhenlus type law approximated

sufficiently well for our purposes by the numerical example,

many of the observed phenomena can be explained by this theor) _.

Using the estimated values of E/RT* for the gas rocket, the

theory predicts instability consisting of shock waves followed

by small exponential decay and also predicts the criticality of

the temperature at the stability limits since the amplitude is

linearly dependent upon E/RT*. The theory (which neglects

friction dampening) predicts no upper length limit. The theory

predicts instability at all lengths (for favorable temperature);

however, the assumptions of the theory are violated at lower

lengths. At _short lengths, the combustion zone is nearer the

pressure node of an acoustic oscillation which tends to be

stabilizing and explains the lower length-limit of instability

obzerved in the rocket.

In a series of tests performed b_ Crocco and HarrJe

(Ref. 6) using like-on-like "injection i_} a liquid propellant

rocket motor of variable length, results similar to those of
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the gas rocket were obtained if there were end-lmpingeme_t of

the spray fans of like propellants. That is, the instability

regions occurred at low and high mixture ratios with no clear

upper-length limit. (If there were no end-lmpingement, an ex-

ternal pulse was sometimes necessary to move the engine into

unstable operation. The driving mechanism of the instability

here might be suspected to involve droplet shattering.) The

instability occurred at all mixture ratios of interest with no

upper-length limit when the engine was pulsed. The instability

occurred in the longitudinal mode and the wave forms were

shock waves followed by exponential decays. Due to large mass

flow per unit area, the amplitudes were quite high and it is

questionable that a theory" such as this one which involves a

series expan_ioo in an amplitude parameter could be applicable

in a quantitative manner. However, qualitative comparisons

might be possible on the basis of more definitive experiments.

Longitudinal instability consisting of shock waves

followed by rapid decay of pressure has been observed in

radially burning solid propellant motors by Brownlee (Ref. 7)

and Dickinson (Ref. 8.) In these motors burning occurred over
/

the length of the chamber. It is Interesting, therefore, that

even though the condition of concentrated combustion is violated,

this type of instability is still observed.

One can see how for all t_pes of rocket engines,

a relationship should exist between the wave form in the longi-

tudinal mode of instability and the energy release rate as a
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function of position in the chamber. Presently, it is possible

to show this relationship analytically only for concentrated

combustion at the chamber end and with zero phase between pres-

sure and energy addition. In principle, though, this concep

can be extended to other situations. However, for the sole

purpose of seeking information concerning the combustion process

when phase is negligible, an engine may be constructed which ap-

proximately satisfies the assumptions of the theory of Chapter

II and the wave form of the instability may be observed by use

o-" pre_,'re•o_, 'ran_ :_cer_. ?h!_ _rcml;e. t) ae a p_,ei?ul te'h-

nique for tt;e stud3 _ of co_.bu_t_or-proce se?. Of course, it. ap-

plying this Informatlo_ to other configuratlors, i_ would be

assumed that t}_e coz_bu_tion pro_e_s remains u_changed. This

approach might be applicable to end-burning solid rockets as well

as gas rockets.

The validit_ _ of the results of Chapter II are presently

being determined experimentally by means of the Princeton gas

rocket research. As alread_ mentioned, preliminary results are

reported in Ref. 22. In addition, an experimental program

is presently _oeing undertaken to check the validity of the

results of Chapter III.

"The approach that is being used involved

the experimental determination of the effect of "pulsing" the

motor with disturbances of various magnitudes since in the region

of practical values of n , the theory predicts the possibility

of "triggering" action. The possibility of "triggering" action

for thc transvcrse casc has been well established as shown by
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Figure 2. Preliminary results for the longitudinal case are

presented i_ Ref. 6, but, as already mentioned "triggering"

action may involve the strictly nonlinear mechanism of

droplet shattering. This analysis, on the other hand, assumes

a continuity between the linear and nonlinear mechanisms.

CONCLUS IONS :

l) Unstable operation of the motor is possible for

two situations. In one case, the characteristic time of com-

bustion is negligible compared to the period of osclllatlon and,

in the second, the two times are of the same order of magnitude.

2) It is strongly implied that the only stable periodic

solutions of practical interest contain shock waves (in the

longitudinal mode).

3) There is an important relationship between the

forcing function of the oscillation and the wave form in the

combustion chamber.

4) Observation of thls wave form by experimental

means could lead to certain information concerning the combustion

process.

5) "Triggering" action of a longi'tudinal oscillation

by finite disturbances seems most probable whenever there ex-

ists a phase between energy addition and pressure.

6) If there is a "continuity" between the linear and

nonlinear forcing functions of the oscillation, there is a

"continuity" between the linear and nonlinear results. For

example, the same stability limits are predicted.
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7) The nozzle boundary condition is extremely im-

portant in determining the stability criterion.
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APPENDIX A

NONLINEAR MECHANICAL ANALOGY

The following ordinary differential-difference equation

is considered

_,shere2_, C,_,_ , and_are positive or zero only and m i_

some positive integer greater than unity. _represents

x(t-_) and implies a delayed action with time lag _./_and

are considered small and of the same order of magnitude.

Therefore, both the nonlinear effect and the dissipative effect

_ small_-.re

Periodic solutions only are desired. If_ is the

a_gular frequency of the solution, it is convenient to make

ti_e transformations:

The differential-difference equation becomes

(A-l)

is now the independent variable with _ unknown. The

transformation is convenient because now the period of the

oscillation is known (equals 22/'). The transformation back to

the time dimension, however, cannot be performed until_is

determined.

A perturbation technique is used to solve the equation

with _ taken as the perturbation parameter. The perturbation

series for x is written as follows:

+¢% z + ....
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n,_, and T (or_) are "eigenvalues" and, therefore, will

also be written i_ series form (Note they do not satisfy the

strictest mathematical definition of eigenvalues but they are

characteristic values of the solutions). The series are

&_" % + _G_l +(_2t_ 2

T _ TO +_T 1 +E 2 T2

written in the following manner:

n - n o + Cn I + C 2 n2 + ....

m

The eigenvalue perturbations are included since the values of

these parameters depend on the amplitude of the periodic

oscillation. Conversely, the amplitude of the oscillation

varies wlth these parameters.

Since_aad C are of the same order, it is convenient

to say _- k¢ where k - 0 [I] . Now, the series substi-

tutions are made into Equation (A-_. The equation is separated

according to powers of g and the zero order equation becomes:

(where

equation is therefore found to be the following:

+ _ ". =o

=_ :_ " A_ - %_'o-r.= o
A periodic solution is of the form xo "- A cos/O

A is the undetermined amplitude).' The characteristic

Since it is a complex

This equation determines the neutral stability llne in

n space (or in _vs. n space).

VS.

relation, it may be rewritten as two equations:

O
ho -a,b_ "r. : 0
• @
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Only the IT and 2

n

Actually, two curves result from these equations and they are

given by the following relations:

cases are considered here. So, in _,

space, the following hyperbolae result:

These curves are shown in Figure AI. Note that only

positive values of _, n, and_ are considered. A stability

analysis of Equation (1) shows that small perturbations grow

for values of _ and n to the right (shaded side) of each

curve. Small perturbation decay on the other side of each of

these neutral stability curves.

Equations(A_) yield interesting information about the

solution. Whenever no tlme-lag effect exists (n = 0), the

resonant frequency of the harmonic oscillator is obtained.

Otherwise, the time lag is most important in determining the

frequency. In fact, in the cases consldebed, the ratios of

the period of oscillation to the time-lag are simply 2 and 1.

Whenever the time-lag effect is most significant (n>_), only

one frequency is possible.

effect is least significant,

possible.

However, whenever the time-lag

(_ n), two frequencies are

At these neutral stability lines, the amplitude is
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zero. Although at a small distance from these curves finite-

amplitude oscillations may exist. The rest of the analysis

deals with periodic solutions of finite amplitude for _, n

_O curves.points close to the vs. no

Now it is necessary to investigate the higher order

equations. The first order equation is:

z _z,,+ A_, -n _ -",
d 'll'o I

÷_ _l.r. ', * Ku. _ -," "_. " - O (A-3)
The first case to be Solved has the exponent m z 3.

m A cos_ is made into Equation (3). ItThe substitution x o

fis seen that x i has the particular solutlon x I - c I cos 3 s

whez_: el is an Undetermined constant. Substituting for x I

and separating coefficients of cos 3_, co_, and slnf in

Equation _-3, the following three relations result:
8

= o
The upper sign is understood when T -.IT

o

is understood when To - 2rr. _ . ._

If use is made of Equations _,-2)::_ and note Is taken

that T 1 =g_o _i + _ _o' Equatli°ns (A-_ _eld the results:

_ CO -

._ o0 _ _ ",
-z-:

"-- O O .

(A-4)
'i

and the lbwer sign'
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Note that cI is real and positive, so that the

third harmonic is added with zero phase, cI is determined as

a function of A which depends on the displacement from the

neutral stability line. Therefore, given n I and _, A

and cI may be determined. In the absence of dissipative

effects (k : 0), the ratio of the period to the time-lag

remains unchanged.

For the case T o - _, periodic oscillations are

permitted for _, n points both above and below the neutral

llne. However, oscillations at points above the neutral line

are possible only for sufficiently large dissipative effects.

Oscillations are possibIe below the neutral line with, or

without, dissipation. For the case To a 2 _', periodic solutions

are only possible at _ n points to the right of the neutral

line. (See Figure Ag). The in%eresting result is that, for

the case To - _', finite oscillations are found at points

where a linearized analysis would predict a stable situation.

Therefore, it is possible for nonlinear effects to produce an

extension of the instability region.

The second case to be examined has the value m : 2.

In this case, no dissipative effects (k z O) are considered.

A cos_ is made into Equation (A-3)Again, the substitution x°

The particular solution is x I - c2 cos 2/+ c 3 where c2 and

c 3 are undetermined constants. Upon substitution for x I into

Equation (A-_ and separation of the coefficients of cos 2f, l,

cos 1 and sin , the following four relations are obtained.
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(A-5)

Through use of Equations (A-2)and of the relationship

T 1 " _o _l + _l _o ' the following Is obtained from Equation

_ All,

a¢%_ x) -

0_-5):

t..
(A-6)

o
c2 is positive and real, so that the second harmonic is added

without a phase, c3 is positive whenever n o _ and

negative whenever n _ . In each case (T --7 or TO - 2_
0 0 '

the relation between _l and nI implies a displacement

tangent to the _o vs. n curve rather than away from the
o

curve. This is a trivial displacement in _vs. n space and

no generality is lost by saying _l " nl " O. If ther_ exists

a nontrivial displacement which will yield finite amplitudes,

the perturbations in _and n must be of higher order.

For the m m 2 case, it is necessary to solve the
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second order equation in order to determine the eigenvalue

perturbations. Thls equation is written as follows:

z d'* • z % % d =f. _

TT_ s_,b_tltutlon for x and x_ in Equation _-7), the
v'L"' v _ " ....... O

particular solution x 2 : c4 cos 3_ is seen (where c4

an undetermined constant).

(A-7)

Is

Now, after substitution of the

solution for

efficients of

are found :

x 2 in Equatlon_-7) and separation of the co-

cos 2_ sin_ , and cos_ , the following results

[- q_o_ + X __,',=]c÷ • A =z =o
]=o

It is seen that T2 "_o _2 + _2 _o for this case. After

this substitution, Equations (A-2), (A_, and (A-8)yield:

A'
•c4 = ,_cx ±_)'E,(.,_*- ".)-(,_-',,)J

(A-8)

-,,,o, ,,, ,

c4 is real and positive so that the third harmonic is also

added without any phase.

The final relation determines the perturbations in

_and n necessary to obtain a given amplitude A or,

conversely, the amplitude depends on the displacement from the

neutral line. As is shown in Figure A3, the unstable region
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(in _, n space) is extended by nonlinear effects for the case

T = 2_. For the other case (To -_), the unstable region iso

extended whenever n o _. However, this is not true whenever

_ n . There, periodic solutions are obtained in the unstable
o

region only. In the cases where the instability region is

extended, it has not been possible to find periodic solutions

within the linearly unstable region (region where infinitesimally

small perturbations grow to a finite magnitude). In order that

these periodic solutions be found, certain nonlinear dissipative

effects must be present.

Note, in the m = 2 case, an eigenvalue perturbation

of 0(_ 2) produces a finite amplitude while a perturbation of

0(_) is necessary in the m I 3 case. This implies that

finite amplitudes occur much closer to the neutral line in the

m - 2 case than in the m - 3 case.

The important conclusions are that: (i) off-resonant

oscillations are possible for both linear and nonlinear

phenomena, (2) the region of instability may be extended due

to nonlinear effects, (3) the amplitude of the oscillation

depends on the displacement from the neutral llne in some eigen-

value plot, and (4) the eigenvalue perturbations may be of

higher order.
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APPENDIX B

INVESTIGATION OF COMBUSTION Z_NE DYNAMICS

Consider a one-dimensional combustion zone near the

injector of a premixed gas rocket (or the receding surface of

an end-burning solid propellant rocket). Assuming the gas is

calorically perfect, the governing equatlons_re:

Equation of State: Pc_r

Oont_u_t__at_o_:_. _ r_ =0
"I "

Erierg_" Equation "U" _,----vp +" rcJ
All thermodynamic variables are nondimensionalized with respect

to their steady-state values at the point of completed combustion;

Velocity u is nondimensionalized with respect to the steady-

state speed of sound at this point of completed combustion;

time t with respect to chamber ler_gth divided by speed of

sound; space dimension x with respect to chamber length;

energy release rate per unit volume r with respect to steady-

state pressure times speed of sound divided by chamber length.

Thermal conductivity and turbulent exchange coefficient are no_

dimensionalized with respect to pressure times speed of sound

times chamber length divided by temperature. This same non-

dimensionalization scheme is used in the analysis of the chamber

gas dynamics.

The momentum equation is replaced by the assumption

that the pressure gradient is zero throughout the zone. Actu-

ally, the pressure gradient is of the order of the Mach number

and is taken as negligible in small Mach number chambers. These

*The species equation is omitted since r is assumed to be a

function of thermodynamic condltlonsonly.
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equations may be combined to yield the equation:

Equation (B-l) can be integrated with respect to x from x =0

(injection surface) to x =_ which is some position at which

the reaction may be assumed complete. Noting that C&- 0 at

x -- 0 and _ _- O _ _=_, the following is obtained:

@

which may be rewritten as

jJ
(B-2)

Equation (B-2) may be simplified by assuming that the perturbation

of heat transferred to the injector surface (or solid propellant

surface) and the p_rturbation of convected energy through that

surface are negligibly small compared to the perturbation of energy

of combustion. :Note that this allows no change in the mean

burning rate due to the oscillation. Letting ze_ subscript

denote steady-state values, the steady-state equation states:

O

Allowing primes to denote perturbation quantities, Equation
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(B-3) is subtracted from (B-2) to _ield

(h-4)

(pu)' represents the energy put into the oscillation of the
x_-_

chamber gases. According to equation (B-4), this is large when

the reaction zone is spread out in distance (large_). In other

words, the rocket becomes more unstable as the reaction zone is

lengthened. It is stressed, therefore, that according to this

model, lower chamber pressures would cause a more unstable

situation.

The energ_ release rate is a function of temperature

and pressure and may be expanded in a double Taylor series about

the steady state values. So that

Substituting Equation (B-5) into Equation (B-2) and ma;<ing use

of Equation (B-3), the result is:

_o _,_ _" .....

• 2

-oj.

_P _ -p....
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Now, it shall be assumed that the reaction zone is so thln that

the tlme derivative term Is negligible. Also, the integrals shall

be replaced by using mean values of r , its derivatives, and T

in the combustion zone. This yields,

- % _:¢

,m_(p

_zp. \ z
(r- I; ....

where the subscript M denotes a mean value. Note that r
0

possesses a maximum somewhere in the combustion zone and that the

mean values are approximatels_ the local values at some point near

the maximum point.

Now, of course, the temperature perturbation (T-l)

must be related to the pressure perturbation (p-l). The re-

lationship between these two perturbations differs from the

isentropic relationship due to two effects; release of energy

and diffusion within the reaction zone. Diffusion effects are

_Jegligible when the diffusion relaxation time is much longer

than the period of oscillation; however, the c_emlcal relaxation

time is almost always much shorter than the period of the os-

cillation. Rather than attempting a solution of the nonlinear,

parabolic equation which would give the correct relationship,

the isentropic relationship shall be assumed. Therefore, dif-

fusion relaxation time is assumed very long and variations in

entropy production due to combustion are deliberately neglected.

Note that this isentropic relationship wlll apply through second
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order in wave amplitude even when a shock wave mo_s through the

combustion zone. Under these assumptioa8 there will be no time

lag or delay in the system.

It is convenient to related (p-l) and (T-I) to (a-l)

through the isentropic relationship obtaining in series form:

- _r-I (r-;)

(T-i)= z (B-7)

Substituting Equations (B-7) into Equation (B-6), the following

result is obtained:

L (_r-_) _ gp r c_.,)_ _ +

+ 4_" _ ;z t. ÷ z--' -lzr'll_a-l)a÷ ....
_-' _ ;p,1T r _--TIj

It is understood that mean steady-state values are used for the

coefficients of (a-Z), (a-l) 2, etc. These are the same mean

values as appeared in Equation (B-6).

Now, using the method of successive approximations

to substitute for (u-uo_ on the right-hand side of this
_Uo Ix :_

II I •
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equation, the final relation becomes:

T'..I _ _'-I r-tJo

L(_") ` _ _e _r ;?r r-, _ *

a_P

+ _ T' ;--+T - (r.,) -L -1.2

Equation (B-8) is a nonlinear relation which states in an ap-

proximate manner the perturbatior in the outflow velocity from

the combustion zone due to a perturbation in the mean thermo-

dynamic conditions within the combustion zone. Therefore, this

is the governing relation for the feedback of energy to the in-

stability.

By comparison with Equation 9 in Chapter II, it is

seen that for this t_,pe of combustion process

• -' Y__I -c_-,)'
O

(B-9)
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APPENDIX C

SMALL PERTURBATION ANALYSIS

The stability of the steady-state operation is

examined for the configuration as already defined in

Chapter II; that is, a one-dlmensional flow in a constant-area

chamber with a zero-length nozzle and a combustion zone

concentrated at the chamber end. Also, the perfect gas assumption

is made.

The transformation to characteristic coordinates is

made with the following numbering system for the coordinates:

_-=_ at x - 0 (combustion zone), _- 1 +_ at x = 1

(nozzle) and _-_= 0 at the initial point, x = t = O.

The equations of the system are given by Equation (2)

Chapter II :

r-o "

:
The usual nondimensional scheme is used: thermodynamic

_,a_ab!es a_ non_o___ _,_*_ _ ....................... _ ._,_ _e_=_ to their steady-

state variables and velocity is nondimenslonalized with respect

to steady-state speed of sound. Further, space dimension is



C-2

nondimensionalized with respect to chamber length; time with

respect to chamber length divided by the speed of sound.

For the purposes of this analysis, the first two

equations are of main interest. That is, it is desired to

know the tlme-wlse behavior of a small perturbation Qf the flow

properties. Nonlinear corrections in the coordinates are not

desired. So, the first two equations only are investigated

in order to determine the stability of the system under the

influence of small perturbations.

These equations have the following solutions:

Q (<)= _-i o,.-u.

All flow properties are considered as a steady-state

term plus a perturbation term:

Q (_1 = Q° (,.0,-Q" ('-.1
u.

o,. = I * =" (=,ie)

symbols indicate perturbation values.

The pertuzbation equations are found to be the following:

P'(B) = y-t o.." 4. u.."
1

2.
Q "&.) : _7 o.'- =."

where zero subscripts denote steady-state quantities and primed
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so that

[pV)+Q'
(C-l)

The boundary condition at the combustion zone results

from perturbing Equation (9) in Chapter II. It may be written

as follows:

Substitution from Equation (C-l) results in the

relationship:

C,-_) P'_?)= ¢,+_v)_'4')

ir.--_--! t%where

(c-2)

Equation (C-2) indicates that a wave gains strength in reflectio_

at the combustion zone (P'/Q' _l). This gain is expected due

to energy addition from the combustion process.

The boundary condition at the nozzle entrance is

@

For this case, substitution from Equation (C-l) yields

written:

the relationship:

(_-_) P'(#):(,_r) Q' (l+#) (c-3)

Equation (C-3) indicates that a wave loses strength in reflection

at the nozzle (0'/P' (I). This loss results from the convection

of energy of oscillation out of the chamber through the nozzle.

Note that changes in wave strength may occur only at the nozzle
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or combustion zone.

Now, Equations (C_) and (C-3) my be combined to yield

the following relationship:

Q'CB) -  -cuV"
Note that the natural peri¢_ of oscillation equals unity (in

characteristic coordinates). So, the value of_indicates the
/

change in amplitude of the disturbance over a period of time.

Specifically, whenever _ _ l, exponential growth of the small

disturbance occurs and whenever/_< l, exponential decay occurs.

In the special case/_- l, a neutral oscillation of the small

disturbance is obtained.

The following is readily seen: _ 1 implies _l,

(_- 1 implies2_- l, and &#(1 implies _ 1. Therefore, if

CaJ- l, the motor is unstable; i.e., small disturbances grow

until inhibited by nonlinear effects. The growth is forced to

occur because more energy is added to the oscillation at t_e

combustion zone than is removed at the nozzle. Whenever, _, l,

the opposite Is true resulting In a stable situation; i.e.,

more energy is removed at the nozzle than is added at the

combustion zone. Of course, whenever _@- l, the energy addition

and energy removal are in balance, explaining the neutral

oscillation.
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APPENDIX D

INVESTIGATION OF SOLUTIONS TO DIFFERENTIAL EQUATION OF CHAPTER II

In Chapter II the differential equation which governed

the waveform of the oscillation was found to be of the type

This differential equation is related to the combustion insta-

bility phenomenon by means of the following definitions:

_---Q,

I

(r.1)(,.W[ "% ,.r +

The value of r is always positive for practical situations.

is usually positive, but may be negative. A continuous

solution for y(_) is sought in the range 0 _ @&_ 1. Since

expansion shocks are not allowed, negative Jumps in y (or $l)

are ruled out. Positive Jumps (which correspond to compression

shocks) are allowed at the endpoints (0 and 1). Since c is

defined as the average of the values of y at the two end-

points and the solution is continuous between the endpoints,

there must exist some value of @_ (in the given range) such

that y = c at that value.

where C =_" [_ C') 4" _ (.)]
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It is more convenient to look at the reciprocal

equation :

= C-

Note that if _.(y)

is also a solution.

(D-I)

is. a solutlon, og(y) plus any constant

So, any curve of the solutions may be

translated in the q-directlon on an _vs. y plot in order

to satisfy one condition on the solution.

The topological structure depends very much on the

values of _, r, and c. The case c • 0 and _c+r_O is

considered first. Here, a maximum of _(y) exists at y -- c.

It is also seen that d___ becomes infinite at y • 0 and
dy

r

y • -_ . There are three separate structures within this

first case depending upon whether _ is greater than, equal to,

or less than zero.

If _ _ O, the following additional information is

given by the differential equation

r cW

r
O>y • -_ , dy < 0

O_y<c , d_ 0

y_c , d_ 0
d-F<

Figure D-la shows the above information in graphic form. The

solutions are continuous within each of three adjacent regions.

They cannot, however, be continued from one region to the next

except, perhaps, at infinity.
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In the subcase _. O, the differential equation

indicates the following:

d_ <o
y _0 , dy

0 _ y _ c , d_
_-,o

y _c , d_
y -<o

Figure D-lb gives a sketch of the solution for this subcase.

Note that there are two continuous regions with a discontinuity

between them. The results for the subcase _<0 are obtained

in a similar fashion and are shown in Figure D-lc. It is seen

that they are similar to the other subcases. The only possibility

here is that c ,_ (since cm0,Ac+r>O, r_O, and _<0).

Next, the case c _ 0 and _ c+r < 0 is examined.

r
The only possibilities here are _<0 and c_-_. A minimum is

found at y I c and infinite slopes are indicated at y - 0

A
that :

In addition, the differential equation indicates

deg_

y _0 ' dy < O

o_y_
d_
---- _0
dy

. r d_
 <y<c , __<dy

d_

y_c , _-_

0

0

As shown in Figure D-Id, three regions are obtained with dis-

continuities between them.

The third case has c _ 0 and _c+r = O. Here
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-r
c s _ , so the only possibility is _<0. The slope is infinite

at y - 0 and at first sight is indeterminate at y _ c. Appli-

cation of L'Hospital's Rule, however, shows that d_ = 1
d-_- _ at

y - c• In this case, no maxima or minima exist except at infinity.

The slope is positive for

indicated in Figure D-le.

Whenever c _ 0

y _ 0 and negative for y _ O, as

and _c+r_O, it is not possible

to have a continuous solution in the range O_ _ _ i. Since

- )3c : 2 (o) + y(l and y(1) < y(o) for a compressive shock,

it is necessary that y(o) _ c and y(1) < c. It is not

possible to have a continuous solution without going outside of

the range 0 _ _<

If c _ 0

be found between

however, so that

shock.

i •

and _c+r u O, a continuous solution can

y(1) and y(o). The slope is positive,

y(1) > y(o) which would indicate an expansion

The possibility c > O is ruled ou_, therefore, by

not allowing discontinuities within the range 0_ 1 and

by not allowing expansion shocks.

The sketches of the solutions for all the subcases

within the case c < 0 are obtained in similar fashion and

are shown in Figure D-2. Identical arguments may obviously be

used to rule out the possibility c _ O.

Finally, it can be shown that in the case c m O, the

restrictions on the solution are not violated. In that case,

the Equation _) becomes
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m

(D-2)

There are three subcases: A)O, I= O, and A< O. If A_ O, an

Ainfinite slope occurs at y= --- . Whenever = O, a straight
A

line is obtained. The curves for the three subcases are shown in

Figure D-3. Note that in all subcases, a continuous solution

may be found with y(o) _ c = 0 > y(1). It is concluded, therefore,

that c - 0 is the only possibility.

Now, it remains to solve Equation (D_ with the condition

y(1) = -y(o). This statement of a relationship between the

solutions at two points is Just as satisfactory in determining

the arbitrary constant as is the statement of the exact value

of the solution at one point. Equation (D_) may be integrated to

yield the following result:

This may be rewritten in a more convenient form as follows:

Setting _= I, it is found that
-A

Substituting the abo,,e for y(0) ir_ E_uation (D-3), the final

solution is: F _ _ I_

l..I

Taking the limit a_ _ _ O, a linear relation is found:
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This same result could have been obtained by setting

the differential E4uation _-2) and then integrating.

in
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APPENDIX E

NONLINEAR EXTENSICN OF CROCCO TIME-LAG POSTULATE

According to Crocco (Ref. i) the combuution process

for a particular eleme_,t of propellant is sensitive to per-

turbations in pressure and temperature over a time period of

magnitude _ before that instant when the propellant initially

becomes burned gas. The combustion process occurs at the

rate f during the period _ur_til an amount E is accumulated.

t,That is, for an element of propellant burning at time

t

(E-l)

In other words, f is the rate of accumulation of some entit}

and E is the amount of that entity which must be accumulated

before the element burns, f will be _ensitive to both pressure

,.:r,Jtemperature fluc_uation_.

_}" "_ " is "_ ........,e exact r_ature of t _'__ _" _'_

also the specific relationship bet.ween f and temperature and

pressure is not certain. This will be left in an arbitrary form.

Much may still be determil;ed from this type of approach as

has been accompli'Jhed for the linear case b_ Crocco.

It is convenient to relate the mass flux of burned

sa_es to the rate of chance, of time-la_ of the propellant

burr_ing at a particular instant. Note that the assumption of

concentrated combustion zone at the injector end is used. The

concept, however, is readily extendable to other cases (see Ref. 1).

The mass flux _i of unburned propellants entering the pressure s_nsi-

II l
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tire portion of the combustion process at time t-_is different

from the mass flux of burned gases, fnb ermltted from the combus-

tion zone at time _ . (The mass flux entering this sensitive

portion of the combustion process equals the mass flux injected

even in the unsteady-state). If _L is the time during which a

unit mass of unburned propellants enters the pressure-sensi-

tive portion of the combustion process and if _ is the time

during which the same unit mass is emitted as burned gas, the

conservation of mass relation tells us that

ct) :
The differel_ce between the two time durations (_A| and

_t_ ) depends upon the difference in the period _of the parti-

cle at the be:_inning of the duration and tiJe period _of the

Lar._icle at the end of the duration. The relation is

where _(t) is the duratior of the pressure-sensitive portion of

the combustion process for a particle which burns at time t.

Equations (E-P) and (E-3) me3 be combined to yield the relation

= _t, - ,rt,

Taking the limit as _-_ ----_0, we get
#

(E-_)
__._ : I. d__._d_

Now, it is desirable to relate _ to fluctuations in

the thermodjnamics properties b_ means of the relation given b$,

Equation (E-l) and, also, a relation between f and the thermo-
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dynamic properties. The resulting relationship would provide

the boundary condition at one chamber-end for the equations

governing the wave phenomenon. Since the wave equation is beln_z

solved by a perturbation technique, it is con\'enient to express

the boundary condition as a series* in the amplitude parameter)_.

Also, the boundary condition should be transformed to

apply in the characteristic coordinates which are used in the

gasdynamlc analysis of Chapter III.

It is seen that the duration of the period of pres_:ure

and temperature sensitivitT, _, and the rate function, f, are

both dependent upon the amplitude of the fluctuation. The

critical amount of the er.tit.v-to-be=accumulated, E, does not

depend on the amplitude; i.e., it is a constant associated with

t_'¢ par.ticu!ar injector and propellants. Expanding the right-

l_end side of Equation (E-I) in a Taylor series, a relation is

d ..... "L;¢J '"'-'"" oe._(e,¢) _(Lo} t. _,(_.(:) _:"

)dr'+c---Fo' .t , .n

t.'t'l&¢) ,o *-h%e) e.o

,. 0(¢')

J$

"_-vc%o)

Combit_ing this cta_ement with ';" _ ,_,,,e above, the str.,p]If_ej reiatiu_

* The series must include _erms of order _3 and below since, as

will later be sno_'{n, tt;e cigenvalue per,_urbation_i are of ,_e,J-
end order.



is written:

f* j,:o=c 36 _:(t ,e ) + _ ' 12e"
_:-'t'(t:, c) ¢.o _- _.(_¢)

(E-5)

Equation (E-5) states that f and _perturbations must be related

to each o_her in such a manner that the integral of Equation (_ I)

z,emair,s unchanged. For example, if the average value of f over

the time period _-_ tl _ is less than the steady-state

%alue, _ is thcn ]reater than its _tead_:-state value.

Leibnitz' _qu.'c _ u_ed to c_,aluate the der.ivutivcc of

t}]e irltecr'als it! Equatio!: (E-5). Suppose that f(t,_ ) and

h;ay be _._ritten irJ sct"ies f'orm_:

If we assu_ne that the series are convercent, it follows that

(E-_)

Usi:_.,Sthis infor_natiol,, the applicatio_i o2 Leibnitz' Rule to

_ ' Note that it is'a'l:..-absassumed tbatfo(t' )may be replaced by

Its averaje valuc over -:be period _-%'_ _'_ % . So, ?u ic
a constant independent of time.
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Equation (E-5) yields the following:

o=c[ z,]+
_o

÷C t [

-%

_ °

An expression for _ [g _, C'_ z +_' _] is readily

obtainable from the above equation. However, this will not be

an explicit relationship between the perturbation in _" and the

perturbation in f since such terms as _i(%-_).[_z_ + E3¢+ o_E')2

will appear. This appearance of the coefficients _ _ _ etc.,

are in terms of higher order in _ , so that the method of successive

substitutions is applied to obtain an explicit relationship*.

This relation may be written as follows:
_ _t

*Separation of the equations accordln,Z to powers in _ is with-

held temporarily until coordinate perturbations and eigenvalue

perturbations are completed.
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The relation on the previous page may be differentiated to

obtain _ (Note that c/_ --- 0 )"

[aT = _:
0

÷C

-#
0

d

0

) t

o (E-7)
Now, the rate function f depends upon temperature and

pressure. It will be assumed that the dependence is the same

throushout the combustion process_ i.e., fCp(_')_ _" ('# ") )

would remain constant with p and T even if t' varied. In other

words, the effect (upon f) of chanses in thermodynamic conditions

is equally important for each and every instant a particle spends

in the process of beins combusted. Furthermore, by means of an

equation of state and the Laws of Thermodynamics, the pressure

and tcmperature at any time may be related to the speed of

sound* at that time. The exact nature of this relationship can

only be determined by an extensive investi_ation of the combustion

It Is co_ 'er,ienc to work With the cpee;_: of sound when
anal_, zin:_ wave pt_enomet_a.
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process. For our purposes, an arbitrary relationship between f

and the speed of sound a shall be assumed and the theory shall

be oeveloped in this heuristic manner. Specifically, it is sald

that a Taylor series may be written

_c_.)=i 4-iV{o.-._)+.A4__ .i)_ +
4:c_)

L co.- !)3 __ O_ Ca.-_) ÷

where

do..

The standard nondimensional scheme is used (see Chapter

I, page 13) so that a = i is the steady-state value for the speed

of sound. N, M, and L are coefficients which are related to the

combustion process and they must remain arbitrary until the ex-

act nature of the combustion process is understood. However,

_ _mpn_t_nt pn_nt Js that stabiiity c_teria are st .... _........................ _ U_ U _ _ --

lated to these coefficients as is shown in Chapter III. The def-

inition _= _ N is made to be consistent with Crocco (Ref. i)

who wrote f as a Taylor series in the pressure perturbation

(_ 8p =I ). As stated in Chapter III (Equation2 ),

the speed of sound is written as a series in _. Substitution

of this perturbation series in the above Taylor series for f (a)

and comparison with Equation (E-6) yields the following in-

formation :

_-o Y'-I i
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The relations on the previous page are substituted into

Equation (E-7) with the result

+(' r-L / ' ' °._J __-I / "
_.-_

I !

(S-8)



The r_)t),::sflux from the eotnbu:,tlon zone should ai:,:: ',<=

expanded in a series In _ before substituting Equation (E-II:))

into Equation (E-4). Of course, the nmss flux fa --pu. Furthe_-

more, under steady-state operation, the flux injected equals

the flux emitted from the combustion zone. So, _-_oUo .

Noting that both _ and u may be expressed as series in _, we

find the following

O Cc )

It is convenient to relate the coefficients _i, _2, etc.

to ....... _ ....... _- etc ,T-a_ _ ........ _U1 ulJt_u

the gas is perfect and the flow field is homentropi_*outslde of

the combustion zone, the following statement is valid:

p=

Substitution of the perturbation series for both p and a,

expansion of the right-hand side in a binomial series, and sep-

aration according to powers in _ yield the results:

Combination of the above information and Equations (E-4),



E-I3

(E-8), and (E-9) produces a relationship between the perturbation

of gas velocity u and the perturbation of t;e speed of sound a

at the end of the combustion zone. This boundary condition is

stated as

where the Inhomogeneous terms are defined as follows:

R, =-0

II

Rt =_#I 3-r- - _r_-,,,* (,-_,/(,-r,,)] o.,_)÷

=,ct)%(t-_)

f

,

{_.-ln%
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If C-'_O, this boundar_y condition agrees with Crocco's re-

suit for linear perturbations which states

a

where primes denote infinitesimal perturbations. The appear-

ance of the retarded variable a(_-'_'o) under the perturbation

scheme is the reason for the name "time-lag theory."

The boundary condition represented by Equations (E-lO)

is given in a time coordinate system. The wave problem is

solved in characteristic coordinates, however, so it is neces-

sary to rewrite thc boundary condition in the new coordinate

system. Care must be taken in transforming the retarded variable

a(_- N o ) to characteristic coordinates. While the time-lag

is a constant in time coordinates, it is not a constant in char-

acteristic coordinates. Due to wave distortion, the time-lag

is an oscillating quantity. Wave distortion is a nonlinear ef-

• _, _,_._v_, _o that *_ _11a_o,_ _e _ _ 1_ S _ ne

higher order in _and may be taken into account in an orderly

fashion.

As shown in Chapter III, space and time coordinates are

rewritten as functions of the new independent variables, the

characteristic coordinates _C and / , and, furthermore, are

perturbed as a series in _ . At the combustion zone, in

particular, _._ and we have

(E- ll)
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Consider

such that

@-----_- _ and let F @ correspond to _ @

It is desired to relate _ to _ . The difference is the lag in

characteristic coordinates. Substituting the series from Equa-

tion (E-II) into Equation (E-12), we have

The zero order solution for t o (_,#) is obtained in Chapter III

and is written as follows

A convenient definition is made
L

l- u.ob- 2L
o P-. o

These statements are combined with Equation (E-13) to yield

Using a Taylor series expansion for t I _ ) about the point
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_-b)p-4 _ we see that

. o c/-_I _)<-

"-_ _"_ _ _,,_ve _ _n _]_ng the llne _=#.

Combining the two above relations with Equation (E-14) by suc-

cessive substitutions, we find

_,_,/_ =_,_1-_,1-_,)+_T c/-_,,_-_ -
-t, c_-_,f'-{ )] +o_e';

t= <A"ID -- t, e#.A.,j. f ) + o <_J
Now, Equation (E-14) becomes

,-_oz_- )3 ec _ z-_2 _,_._-__,__..I-_,__7

li/.,_ , o
(E-15)

Consider an arbitrary retarded variable _, (e.g.,_ ) ).

Using a Taylor series expansion about the point _-bo, _-b o

along with Equation (E-15) for the difference between /_and _-bo,

we have

,- _lA i= c_i il--o Li z-y-' •

E-16
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Now, this relation may be used in a straightforward manner to

evaluate the ai(_-'_=_ _ _A_A 4) in Equations (E-IO). Note

that any changes of order £@ produced by the coordinate transfor-

mation will be neglected. In view of these considerations, there

still vemains one term to be transformed. This is the last term

i!

in the expression for R2. It essentially involves the term

This may be rewritten as

The following is readily seen from Equations (2) and (lO) in Chapter

III

Furthermore, we see that ___, _ ,#j

('_,,,4 _ ¢#,9'",)'"oc_2

Now, treating the integral, it is found that

+O('c')
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Note that

The same result would be obtained by expansion in a Taylor series

with the lower integral limit as the expansion purameter. Com-

bining this with Equation (E-15), the integral is evaluated as

o

Considering _ -- j we may use Equation

a_____,/_,_/_*):_<W,__)
(E-ig) to obtain the proper transformation for this derivative.

Now, the term with the time derivative and the time integral may

be readily evaluated in a perturbation series form.

The coordinate transformatio_i can now be applied to

_i,_ (E-!O T_e _.:hort-h, and ..... _ ...... -- (_A) _• . r,Jk _. _ k,t,

._<_,_._, ar_ used in this _i,al e_pre_s_on
_o

where the inhomogel_eous terms are

_--J)-i_ _] _ _ _-

z

÷[i:_"__)'- _] _._.- ( ','.-y)'

*Note that Rj = 0
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The last term of R_ and the last few terms of _ result

from expressing the retarded variable at /_-b rather than at
o

/*. It is seen that derivatives and integrals appear in this

boundary condition but they always appear as nonlinear terms.

So they may be calculated from lower order analysis and really

are Just considered as known terms in the inhomogeneous part of

the higher order boundary condition. This will become clearer

after the boundar%, condition is separated according to powers

of 6 . Then it will be seen that tkls condition is actually

just a series of algebraic relations. (The separation procedure

is being delayed until after the elgenvalue perturbation is

performed in Chapter III.) These algebraic relations, however,

will contain retarded variables.

In conclusion, Equation (E-17) is the nonlinear expression

of the condition at the end of the combustion zone. In particular,

it is the boundary condition at one chamber end for the gas-

dynamic analysis of the combustion _--_-_ ..... _i_ T, _

based primarily on the arguments which lead to the establishmen_

of Equations (E-l) and _-4); i.e., it is an extension of the

Crocco time-lag theory which includes nonl1_ear terms.


